IBG-4 - Magnetische Resonanz

Anisotropic Parameters in Liquid State NMR

Angewandte Chemie International Edision: RDCs

An important application of high resolution NMR spectroscopy is the structure determination of organic molecules in solution, i.e. constitution, configuration and conformation. A number of sophisticated methods based on classical NMR parameters like chemical shifts, J-couplings and nuclear Overhauser enhancement (NOE) has been developed to accomplish this tasks. The approach has been successfully applied to a vast number of molecules including biomacromolecules and natural and synthetic products. A drawback of these standard NMR parameters is their short range.

The free molecular tumbling in solution effectively averages all anisotropic parameters to zero. If partial alignment is introduced full averaging cannot take place and some residual anisotropic parameters can be detected. The most widely used are the so called Residual Dipolar Couplings (RDCs). They depend on the distance between interacting nuclei and on the angle between internuclear vector and external magnetic field. Thus, RDCs contain structural information about the molecule in a wider range. Our work is focused on development of gels suitable for alignment media and the structure evaluation with the measured RDCs.

In many cases these data are not sufficient and an alternative approach is required. This is based on the measurement of additional anisotropic NMR parameters in appropriate alignment media. Under such conditions the following anisotropic parameters are accessible: residual chemical shift anisotropy (RCSA), residual dipolar couplings (RDCs) and residual quadrupolar couplings (RQCs).

Contact B. Luy

NMR: coupling angle
RDC: HSQC spectrum - isotropic and anisotropic


Residual dipolar couplings depend on the internuclear distance between the two NMR active nuclei (r) and the angle of the internuclear vector with respect to the outer magnetic field. Knowledge of RDCs allows the determination of the molecule’s alignment relative to an external reference, thus correlating also distant parts of the molecule. The RDCs have been used to study the conformation, configuration, constitution, and enantiomeric distinction of small-to-medium-sized organic molecules.

streched polymer gel

The successful measurement of RDCs requires suitable alignment media which allow proper scaling and solvents range. For organic molecules usually two types of media are used: liquid crystalline phases and stretched polymer gels. A number of polymer gel based alignment media for various solvents has been developed in our group and currently we are working on further optimisation of the alignment media. 

RDC: Stretching Apparatus

The stretching apparatus is an easy way to scale the alignment strength and as well measure RDCs at various alignments with one sample.

RDC_streching: HSQC spectrum
RDC Gelatine

The experimental RDCs are further used to solve different structural problems. During RDC analysis, an alignment tensor is calculated for a sterically fixed orientational model. Agreement between experimental and back calculated RDCs allows to solve the constitution, to assign the configuration, and the conformation of the molecule. The majority of the organic molecules we have recently been working with, contains some certain degree of flexibility. In such cases, the straightforward approach, which assumes a single rigid conformation, fails. Therefore, we have started to evaluate our experimental RDCs with a specialized molecular dynamics approach (see more in the Computational chemistry).