Oleochemicals
With their unique structure and their ubiquity, fatty acids represent an attractive feedstock for the application in more sustainable synthesis procedures. In our group, we investigate different possibilities to make use of the inherently present functional groups (i.e. double bonds, hydroxy groups or carboxylic acid derivatives) to produce monomers, often by developing new catalytic procedures, for new polymeric materials. A variety of addition as well as oxidation procedures has been established, opening possibilities for the synthesis of polymeric materials ranging from elastomers to thermosets.
Working on this topic: Francesca Destaso, Luis Santos Correa, Jonas Wolfs
Recent publications
Wolfs, J.; Ribca, I.; Meier, M. A. R.; Johansson, M. (2023). Polythionourethane Thermoset Synthesis via Activation of Elemental Sulfur in an Efficient Multicomponent Reaction Approach. ACS Sustainable Chemistry and Engineering, 11 (9), 3952–3962. doi:10.1021/acssuschemeng.3c00143
Santos Correa, L.; Meier, M. A. R. (2022). Ruthenium Catalyzed Oxidative Cleavage of High Oleic Sunflower Oil: Considerations Regarding the Synthesis of a Fully Biobased Triacid. European Journal of Lipid Science and Technology, Art.-Nr.: 2200171. doi:10.1002/ejlt.202200171
Windbiel, J. T.; Meier, M. A. R. (2022). RAFT Polymerization of a Renewable Ricinoleic Acid-Derived Monomer and Subsequent Post-Polymerization Modification via the Biginelli-3-Component Reaction. Macromolecular Chemistry and Physics, 223 (12), Art. Nr.: 2100360. doi:10.1002/macp.202100360
Earlier fundamental contributions
Meier, M. A. R. (2019). Plant-Oil-Based Polyamides and Polyurethanes: Toward Sustainable Nitrogen-Containing Thermoplastic Materials. Macromolecular rapid communications, 40 (1), 1800524. doi:10.1002/marc.201800524
Czapiewski, M. von; Rhein, M.; Meier, M. A. R. (2018). Fatty Acid Derived Renewable Platform Chemicals via Selective Oxidation Processes. ACS sustainable chemistry & engineering, 6 (11), 15170–15179. doi:10.1021/acssuschemeng.8b03644
Winkler, M.; Meier, M. A. R. (2014). Olefin cross-metathesis as a valuable tool for the preparation of renewable polyesters and polyamides from unsaturated fatty acid esters and carbamates. Green Chemistry, 16 (6), 3335–3340. doi:10.1039/C4GC00273C
Biermann, U.; Bornscheuer, U.; Meier, M. A. R.; Metzger, J. O.; Schäfer, H. J. (2011). Oils and Fats as Renewable Raw Materials in Chemistry. Angewandte Chemie / International edition, 50 (17), 3854–3871. doi:10.1002/anie.201002767
Sugar-based Feedstock
With carbohydrates being one of the most abundant renewable resources, they can be used for the production of valuable platform materials. As an example, fermentation of different sugar monomers can yield furan derivatives or 2,3-butanediol, among others. These compounds can be functionalized further to be incorporated into more sustainable materials, including polyesters, polyethers and polyurethanes.
Working on this topic: Anja Kirchberg
Recent publications
Rhein, M.; Demharter, A.; Felker, B.; Meier, M. A. R. (2022). A Fully Biobased Aromatic Polyester Polyol for Polyisocyanurate Rigid Foams: Poly(diethylene furanoate). ACS Applied Polymer Materials, 4 (9), 6514–6520. doi:10.1021/acsapm.2c00922
Kirchberg, A.; Khabazian Esfahani, M.; Röpert, M.-C.; Wilhelm, M.; Meier, M. A. R. (2022). Sustainable Synthesis of Non‐Isocyanate Polyurethanes Based on Renewable 2,3‐Butanediol. Macromolecular Chemistry and Physics, 223 (13), Art.-Nr.: 2200010. doi:10.1002/macp.202200010
Cellulose
The use of cellulose, a highly abundant renewable feedstock that does not interfere with food or feed, can give rise to more sustainable materials. In our group, research focus has been laid upon the functionalization of cellulose within a switchable solvent system based on dimethyl sulfoxide, a superbase and CO2. Like this, it is possible to introduce different functional groups such as esters, thiocarbamates or amides with reduced environmental impact and the possibility to tune the degree of substitution efficiently, thus also allowing to adjust desired material properties.
Working on this topic: Leon Bartlewski, Celeste Libretti, Timo Sehn, Jonas Wolfs
Recent publications
Wolfs, J.; Scheelje, F. C. M.; Matveyeva, O.; Meier, M. A. R. (2023). Determination of the degree of substitution of cellulose esters via ATR‐FTIR spectroscopy. Journal of Polymer Science. doi:10.1002/pol.20230220
Wolfs, J.; Nickisch, R.; Wanner, L.; Meier, M. A. R. (2021). Sustainable One-Pot Cellulose Dissolution and Derivatization via a Tandem Reaction in the DMSO/DBU/CO2 Switchable Solvent System. Journal of the American Chemical Society, 143 (44), 18693−18702. doi:10.1021/jacs.1c08783
Wolfs, J.; Meier, M. A. R. (2021). A more sustainable synthesis approach for cellulose acetate using the DBU/CO2 switchable solvent system. Green chemistry, 23 (12), 4410–4420. doi:10.1039/d1gc01508g
Kirchberg, A.; Meier, M. A. R. (2021). Regeneration of Cellulose from a Switchable Ionic Liquid: Toward More Sustainable Cellulose Fibers. Macromolecular chemistry and physics, 222 (6), Art.-Nr.: 2000433. doi:10.1002/macp.202000433
Earlier fundamental contributions
Esen, E.; Hädinger, P.; Meier, M. A. R. (2021). Sustainable Fatty Acid Modification of Cellulose in a CO2-Based Switchable Solvent and Subsequent Thiol-Ene Modification. Biomacromolecules, 22 (2), 586–593. doi:10.1021/acs.biomac.0c01444
Onwukamike, K. N.; Grelier, S.; Grau, E.; Cramail, H.; Meier, M. A. R. (2019). Critical Review on Sustainable Homogeneous Cellulose Modification: Why Renewability Is Not Enough. ACS sustainable chemistry & engineering, 7 (2), 1826–1840. doi:10.1021/acssuschemeng.8b04990
Onwukamike, K. N.; Grelier, S.; Grau, E.; Cramail, H.; Meier, M. A. R. (2018). Sustainable Transesterification of Cellulose with High Oleic Sunflower Oil in a DBU-CO2 Switchable Solvent. ACS sustainable chemistry & engineering, 6 (7), 8826–8835. doi:10.1021/acssuschemeng.8b01186
Söyler, Z.; Onwukamike, K. N.; Grelier, S.; Grau, E.; Cramail, H.; Meier, M. A. R. (2018). Sustainable succinylation of cellulose in a CO₂-based switchable solvent and subsequent Passerini 3-CR and Ugi 4-CR modification. Green chemistry, 20 (1), 214–224. doi:10.1039/c7gc02577g
Terpenes
Occurring as byproducts in turpentine and citrus fruit production, terpenes represent interesting compounds for special application materials. The double bonds of limonene and pinene, for instance, can be functionalized to introduce epoxide, carbonate, amine or lactone groups. Due to their rigid structure and their structural variety, we investigate the influence of introducing terpene structures into materials such as polyurethanes, polyamides or polyesters.
Working on this topic: Francesca Destaso, Clara Scheelje
Recent publications
Scheelje, F. C. M.; Destaso, F. C. C.; Cramail, H.; Meier, M. A. R. (2022). Nitrogen‐Containing Polymers Derived from Terpenes: Possibilities and Limitations. Macromolecular Chemistry and Physics, 224 (3), Art.-Nr.: 2200403. doi:10.1002/macp.202200403
Raupp, Y. S.; Löser, P. S.; Behrens, S.; Meier, M. A. R. (2021). Selective Catalytic Epoxide Ring-Opening of Limonene Dioxide with Water. ACS sustainable chemistry & engineering, 9 (23), 7713–7718. doi:10.1021/acssuschemeng.1c01788
Löser, P. S.; Rauthe, P.; Meier, M. A. R.; Llevot, A. (2020). Sustainable catalytic rearrangement of terpene-derived epoxides: towards bio-based biscarbonyl monomers. Philosophical transactions of the Royal Society of London / A, 378 (2176), Art.Nr. 20190267. doi:10.1098/rsta.2019.0267
Earlier fundamental contributions
Raupp, Y. S.; Yildiz, C.; Kleist, W.; Meier, M. A. R. (2017). Aerobic oxidation of α-pinene catalyzed by homogeneous and MOF-based Mn catalysts. Applied catalysis / A, 546, 1–6. doi:10.1016/j.apcata.2017.07.047
Firdaus, M.; Meier, M. A. R. (2013). Renewable polyamides and polyurethanes derived from limonene. Green Chemistry, 15 (2), 370–380. doi:10.1039/c2gc36557j
Lignin
Lignin is an important renewable feedstock in chemical industry as it is one of the most abundant biopolymers. Its use for the generation of bioderived polymers is thus investigated extensively. Consisting of a complex network of methoxylated phenylpropanoid units, lignin is the largest renewable resource for aromatic compounds. Deconstruction and further functionalization of lignin can thus yield small molecules that are currently obtained mainly from fossil resources. Lignin is obtained from waste in pulp and paper industry. Turning this waste into valuable starting materials for the chemical industry can be considered a highly sustainable approach.
Working on this topic: Celeste Libretti
Earlier fundamental contributions
Over, L. C.; Hergert, M.; Meier, M. A. R. (2017). Metathesis Curing of Allylated Lignin and Different Plant Oils for the Preparation of Thermosetting Polymer Films with Tunable Mechanical Properties. Macromolecular chemistry and physics. doi:10.1002/macp.201700177
Over, L. C.; Grau, E.; Grelier, S.; Meier, M. A. R.; Cramail, H. (2017). Synthesis and Characterization of Epoxy Thermosetting Polymers from Glycidylated Organosolv Lignin and Bisphenol A. Macromolecular chemistry and physics, 218 (4), Art. Nr.: 1600411. doi:10.1002/macp.201600411
Over, L. C.; Meier, M. A. R. (2016). Sustainable allylation of organosolv lignin with diallyl carbonate and detailed structural characterization of modified lignin. Green chemistry, 18 (1), 197–207. doi:10.1039/c5gc01882j