Synthetic life
(continuation of “The molecular origins of life” SoSe 2021)

WiSe 2021/22
Zbigniew Pianowski
7 lectures (90 min. each) in English

1st lecture: 18th Oct. 2021 (Mon.)
Zoom:

Following lecture terms 15:00-16:30, Mon.:

The most current dates, handouts – on the website:
and by ILIAS (KIT)
The molecular origins of life

Life is a self-replicating chemical system capable of evolution (NASA, 2009)

Origin of the Universe – stars, planets, elements
Origin of biorelevant monomers – primordial soup
Complex chemical processes on the way to living systems
Protocells and LUCA
Synthetic life

How new functions can emerge from known biological building blocks?

www.genome.gov/about-genomics/policy-issues/Synthetic-Biology
What is Life? What makes it different from just matter?

Everything – living or not – is just chemicals made of atoms.
Every living creature has its code, that makes it grow, reproduce, and change. DNA turns dust into life.

Fishes swim in water. But what makes fishes alive and not water is the way how the atoms are organized – By the special kind of molecules: DNA – the double helix molecule that houses the genetic alphabet of A, C, G and T, which, in different combinations, can make a flower, or a frog, or you...
20 years ago, Scientists learned to read the creatures’ entire DNA sequence, from beginning to the end – the genome.
Whole genome sequencing was initially achieved for simple organisms: bacteria, nematodes, flies and plants...

Haemophilus influenzae
1995

Caenorhabdis elegans
1998

Drosophila melanogaster
2000

Arabidopsis thaliana
2000
... and way up to mammals and human

Mus musculus
2002

Homo sapiens
2004
Human Genome Project (NIH)
Craig Venter – Celera Genomics (private)
With that knowledge, scientists begun to tinker...

... to take a glow from a jellyfish...

... and transfer it to a cat...

... or to a rabbit...

To make creatures do what they never did before.

As biologists got better in this, a new kind of science was born – synthetic biology
Definition: **Synthetic Biology**

(also known as *Synbio*, *Synthetic Genomics*, *Constructive Biology* or *Systems Biology*)

„the design and construction of new biological parts, devices and systems that do not exist in the natural world and also the redesign of existing biological systems to perform specific tasks”

Advances in nanoscale technologies – manipulation of matter at the level of atoms and molecules – are contributing to advances in synthetic biology.
What can we do with new tools of synthetic biology?

We can improve what was spelled out for the 3,5 Billion years of evolution.

We can take it beyond reading genomes or editing genomes...

...and start writing genomes.
Our own ideas of what life should be like.

Making creatures drastically different from any that have ever existed.

How could it be done?
Overview of the course

Artificial ribozymes and aptamers for efficient catalysis and recognition (SELEX, DNAzymes, foldamers);

Unnatural base pairing – expansion of the genetic alphabet;

Artificial genetic polymers and oligonucleotide analogues (XNA);

Biosynthetic incorporation of unnatural amino acids (UAAs) into proteins;

Enzyme engineering – production of enzymes with unknown or unnatural properties, ab initio protein design, directed evolution, theozymes;

Artificial lipid vesicles as models for protocell multiplication;

Design of artificial organisms
Artificial genetic polymers

DNA

\[\text{O} \overset{\text{P}}{\overset{\text{O}}{\text{O}}} \overset{\text{O}}{\text{O}} \overset{\text{B}}{\overset{\text{O}}{\text{O}}} \]

\[\text{OH} \]

\[\text{HO} \overset{\text{P}}{\overset{\text{O}}{\text{O}}} \overset{\text{O}}{\text{O}} \overset{\text{B}}{\overset{\text{O}}{\text{O}}} \]

\(\text{d-RNA} \) (natural)

\(\text{l-RNA} \) (unnatural)

\[\text{O} \overset{\text{P}}{\overset{\text{O}}{\text{O}}} \overset{\text{O}}{\text{O}} \overset{\text{B}}{\overset{\text{O}}{\text{O}}} \]

\[\text{R} = \text{F}, \text{NH}_{2}, \text{OCH}_{3} \]

\(2'\)-modified RNA

\[\text{O} \overset{\text{P}}{\overset{\text{O}}{\text{O}}} \overset{\text{O}}{\text{O}} \overset{\text{B}}{\overset{\text{O}}{\text{O}}} \]

\(\text{Phosphorothioate} \)

\(\text{Boranophosphate} \)

\(\text{Hexitol Nucleic Acid} \) (HNA)

\(\text{Threose Nucleic Acid} \) (TNA)

\(\text{Peptide Nucleic Acid} \) (PNA)

\[5' \text{CTTATPPZZZATAG-3'} \]

\[3' \text{GAATAZZZPPTATT}-5' \]
Artificial genetic polymers
Expanded genetic code
Expanded genetic code
Protein engineering and de novo enzyme design
Introduction

How chemists and biologists are learning from each other?

Greek mythology – introduction to modern molecular biology – chimera, centaur
Introduction

The Central Dogma of the molecular biology – DNA → RNA → proteins

Polymerases and ribosomes - the molecular machines of life

PCR – Polymerase chain reaction – *in vitro* DNA amplification

Recombinant protein production – how to produce a protein in another organism

Protein engineering – how to make desired modifications in proteins
From DNA to proteins

Genes contain instructions for making proteins.

Proteins act alone or in complexes to perform many cellular functions.

https://www.youtube.com/watch?v=gG7uCskUOrA
The Central Dogma: From DNA to proteins
DNA replication

DNA-Polymerase (Polα)
DNA-ligase
RNA primer
DNA primase
Helicase
Single strand, Binding proteins
Topoisomerase
Okazaki fragment
Leading strand
3'
5'
Lagging strand
3'
5'
https://www.youtube.com/watch?v=TNKWgcFPHqw&ab_channel=yourgenome
Procaryotic DNA Polymerases

<table>
<thead>
<tr>
<th>Polymerase</th>
<th>Polymerase activity (for all enzymes 5’ → 3’)</th>
<th>Exonuclease activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA polymerase I</td>
<td>Filling if gap after removal RNA primer, DNA repair, removal of RNA primers</td>
<td>5’→3’ and 3’→5’</td>
</tr>
<tr>
<td>DNA polymerase II</td>
<td>DNA repair</td>
<td>3’→5’</td>
</tr>
<tr>
<td>DNA polymerase III*</td>
<td>Replication, proofreading and editing</td>
<td>3’→5’</td>
</tr>
</tbody>
</table>

*The main enzyme of replication

Procaryotic DNA Polymerase III

<table>
<thead>
<tr>
<th>Subunit</th>
<th>Function</th>
<th>Groupings</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>5’→3’ polymerization</td>
<td>Core enzyme: Elongates polynucleotide chain and proofreads</td>
</tr>
<tr>
<td>ε</td>
<td>3’→5’ exonuclease</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>Sliding clamp structure (processivity factor)</td>
<td></td>
</tr>
<tr>
<td>τ</td>
<td>Dimerizes core complex</td>
<td></td>
</tr>
</tbody>
</table>

SUBUNITS OF THE DNA POLYMERASE III HOLOENZYME

NATURE REVIEWS | MOLECULAR CELL BIOLOGY

58
Extremophilic organisms

Thermus aquaticus is a thermophilic bacteria from hot springs in Yellowstone Park

70°C – optimum, living range: 50-80°C

It is a source of thermostable enzymes
PCR – Polymerase Chain Reaction

Taq polymerase withstands denaturing conditions (hot temperatures) detrimental for most enzymes. *Activity optimum: 75-80°C, half-life at 95°C > 2.5 h*

1990 – Kary Mullis optimized the PCR technique with *Taq* polymerase (1993 Nobel Prize)
Polymerase chain reaction - PCR

1. Denaturation at 94-96°C
2. Annealing at ~68°C
3. Elongation at ca. 72 °C
Transcription: DNA \rightarrow RNA

RNA Polymerases in Eukaryotes

<table>
<thead>
<tr>
<th>Form</th>
<th>Product</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>rRNA</td>
<td>Nucleolus</td>
</tr>
<tr>
<td>II</td>
<td>mRNA, snRNA</td>
<td>Nucleoplasm</td>
</tr>
<tr>
<td>III</td>
<td>5S rRNA, tRNA</td>
<td>Nucleoplasm</td>
</tr>
</tbody>
</table>

Prokaryotic RNA polymerase

Eukaryotic RNA polymerase

*Figure 29.1
Biochemistry, Seventh Edition
© 2012 W. H. Freeman and Company*
Transcription: DNA → RNA

RNA Polymerase of prokaryotes

<table>
<thead>
<tr>
<th>Subunit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>α, α</td>
<td>Determine the DNA to be transcribed</td>
</tr>
<tr>
<td>β</td>
<td>Catalyze polymerization</td>
</tr>
<tr>
<td>β′</td>
<td>Bind & open DNA template (unwinding)</td>
</tr>
<tr>
<td>ω</td>
<td>Function is not known</td>
</tr>
<tr>
<td>σ</td>
<td>Recognize the initiation sites called promoter</td>
</tr>
</tbody>
</table>

https://www.youtube.com/watch?v=SMtWvDbfHLo
Transcription: DNA → RNA

Prokaryotic versus Eukaryotic Transcription

4) RNA polymerases

- There are three distinct classes of RNA polymerases in eukaryotic cells. All are large enzymes with multiple subunits. Each class of RNA polymerase recognizes particular types of genes.
- RNA polymerase I - Synthesizes the precursor of the large ribosomal RNAs (28S, 18S and 5.8S).
- RNA polymerase II - Synthesizes the precursors of messenger RNA and small nuclear RNAs (snRNAs).
- RNA polymerase III - Synthesizes small RNA, including t RNAs, small 5S RNA and some snRNAs.
Because transcription start and stop signals are specific to one strand, different genes on the same chromosome can be oriented in different directions. Only one particular strand is ever transcribed for each gene.
Transcription: DNA \rightarrow RNA

How do the start/stop signals look like? For procaryotes (like bacteria *E. coli*):

The transcription start site does not exactly correspond to the codon that is used to initiate translation – base 1 (+1). Transcription begins upstream of this sequence. The RNA between the „base 1“ and the start of translation some distance downstream is called the 5' untranslated region or 5' UTR. There is also an untranslated region at the 3' end (3' UTR).

There are two conserved elements in promoter regions of *E. coli*: an element around -10 and an element around -35. These elements can be identified in most *E. coli* promoters.
Transcription: DNA \rightarrow RNA

How does the transcription machinery recognize these sequences?

RNA polymerase itself does not carry out recognition of the promoter. In *E. coli*, there is a separate protein called sigma factor that specifically recognizes the promoter. Sigma factor and RNA polymerase form a complex that initiates transcription at the promoter. Once RNA elongation has begun, sigma factor dissociates from the complex.

The RNA polymerase, sigma factor, and DNA in a complex.
Transcription: DNA \rightarrow RNA

Initiation in eukaryotes is more complex.

Most eukaryotic promoters have a "TATA box" at position -30, and typically have other classes of promoter sequences that are shared by groups of genes.

Eukaryotes use a set of general transcription factors that bind to the promoter region, then recruit other protein factors including RNA polymerase.

Once the preinitiation complex is formed, RNA polymerase is phosphorylated and released from the complex to begin RNA strand elongation.
DNA \rightarrow RNA

In *E. coli*, there are two mechanisms for transcription termination, an intrinsic mechanism and a mechanism that depends on a specific protein called rho factor.

In the intrinsic mechanism, shown above, there is a self-complementary sequence past the end of the coding sequence that forms a hairpin loop once it is transcribed. The base-paired part of the loop is very GC-rich, so the hairpin is stable. The presence of this structure interferes with RNA elongation, and transcription terminates.
Transcription: DNA \rightarrow RNA

In rho-dependent transcription termination, a specific sequence at the end of the gene binds rho factor. When RNA polymerase encounters rho, the polymerase dissociates from the template, terminating transcription.

Eukaryotic transcription termination is similar to that of prokaryotes (polyT, or recruiting CPSF/CTSF).
In 1977, Phil Sharp (Nobel Prize 1993) hybridized an mRNA to its DNA template and prepared the hybrid molecule for electron microscopy by coating the nucleic acid with a basic protein, then using rotary shadowing to coat the nucleic acid-protein complex.

Eucaryotic genes are discontinuous!!!
mRNA processing

The transcript is discontinuous. There are parts of the DNA template that are not represented in the mRNA.

When a eukaryotic gene is transcribed, the primary transcript is processed in the nucleus in several ways. The most striking modification is splicing. Parts of the primary transcript, called introns, are spliced out of the mRNA. The remaining segments of mRNA are called exons.

https://www.youtube.com/watch?v=aVgwr0QpYNE
mRNA processing

Sequencing of many eukaryotic genes reveals a consensus sequence for splice sites to remove introns.

The 5' end of the intron begins with a splice donor site that almost always includes GT as the first two bases of the intron (very rarely, it's GC). The 3' end of the intron ends with a splice acceptor site that always includes AG as the last two bases of the intron. Around the 5' GT and the 3' AG are short consensus sequences that allow us to identify likely splice sites in genomic DNA.
Splicing is facilitated by a ribonucleoprotein complex called the spliceosome. The spliceosome carries out the removal of introns as RNA lariats, joining exons together to make a mature mRNA, as shown below.
Eukaryotic mRNAs are also modified at the 3' end by the addition of a poly-A tail.

Finally, eukaryotic mRNAs have a chemical modification of the 5' end, called a cap. The cap is added to the first base of the 5' UTR.
Splicing is regulated, with many genes producing multiple isoforms of the same protein that can differ considerably in their amino acid sequence due to alternative splicing. Isoforms of the muscle protein tropomyosin derived from alternative splicing are shown below. While there are some exons common to all isoforms, some isoforms have large protein segments entirely missing from other isoforms.

Alternative splicing - tropomyosin

![Diagram showing various isoforms of tropomyosin with alternative splicing](image)
Translation: RNA → proteins

https://www.youtube.com/watch?v=TfYf_rPWUdY
https://www.youtube.com/watch?v=kmrUzDYAmEI
The coupling of transcription and translation in bacteria

Eukaryotic polyribosomes

5' end of the mRNA, because there are shorter protein tails on the ribosomes at that end.
Translation: RNA → proteins

This shows a "charged" serine tRNA, covalently attached to the amino acid serine at its 3' end, with the anticodon paired to a serine codon.
A special set of enzymes "charges" tRNAs, attaching the correct amino acid to particular tRNAs.

A charged tRNA is called an aminoacyl tRNA, so the charging enzymes are more properly called aminoacyl tRNA synthetases.

There is only one aminoacyl tRNA synthetase for each amino acid, even though there can be multiple tRNAs for that amino acid. Each aminoacyl tRNA synthetase is able to recognize all of the tRNAs that need to be charged with the one amino acid that is their specialty.

Amino acids are attached to the hydroxyl (-OH) group at the 3' end of the tRNA through their carboxyl (-COOH) group.
Three sites are associated with tRNAs: the A (aminocyl) site, that accepts a new aminoacyl tRNA; the P (polypeptide) site, that holds a tRNA with the growing polypeptide chain; and the E (exit) site that holds an uncharged tRNA ready to exit the ribosome.
Translation: RNA \rightarrow proteins

Translation initiation

1. mRNA binds to small subunit. Ribosome binding site sequence binds to a complementary sequence in an RNA molecule in the small subunit of the ribosome, with the help of protein initiation factors.

2. Initiator aminoacyl tRNA binds to start codon.

3. Large subunit of ribosome binds, completing ribosome assembly. Translation begins.
Translation: RNA \rightarrow proteins

Translation elongation

1. Incoming aminoacyl tRNA
 New tRNA moves into A site, where its anticodon base pairs with the mRNA codon.

2. Peptide bond formation
 The amino acid attached to the tRNA in the P site is transferred to the tRNA in the A site.

3. Translocation
 mRNA is ratcheted through the ribosome by elongation factors (not shown). The tRNA attached to the polypeptide chain moves into the P site. The A site is empty.
Translation: RNA \rightarrow proteins

Translation elongation

4. Incoming aminoacyl tRNA
New tRNA moves into A site, where its anticodon base pairs with the mRNA codon.

5. Peptide bond formation
The polypeptide chain attached to the tRNA in the P site is transferred to the aminoacyl tRNA in the A site.

6. Translocation
mRNA is ratcheted through the ribosome again. The tRNA attached to polypeptide chain moves into P site. Empty tRNA from P site moves to E site, where tRNA is ejected. The A site is empty again.
Translation: RNA → proteins

Translation termination

1. Release factor binds to stop codon.
When translocation exposes a stop codon, a release factor fills the A site. The release factor breaks the bond linking the tRNA in the P site to the polypeptide chain.

2. Polypeptide is released.
The hydrolysis reaction frees the polypeptide, which is released from the ribosome. The empty tRNAs are released either along with the polypeptide or...

3. Ribosome subunits separate.
...when the ribosome separates from the mRNA, and the two ribosomal subunits dissociate. The subunits are ready to attach to the start codon of another message and start translation anew.
Translation: RNA → proteins – the genetic code

<table>
<thead>
<tr>
<th>1st base</th>
<th>2nd base</th>
<th>3rd base</th>
<th>Standard genetic code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>U</td>
<td>UUU</td>
<td>(Phe/F) Phenylalanine</td>
<td>UCU</td>
</tr>
<tr>
<td></td>
<td>UUC</td>
<td></td>
<td>(Ser/S) Serine</td>
</tr>
<tr>
<td></td>
<td>UUA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>UUG</td>
<td></td>
<td>Stop (Amber)</td>
</tr>
<tr>
<td>C</td>
<td>CUU</td>
<td>(Leu/L) Leucine</td>
<td>CCC</td>
</tr>
<tr>
<td></td>
<td>CUC</td>
<td></td>
<td>(Pro/P) Proline</td>
</tr>
<tr>
<td></td>
<td>CUA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CUG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>AUU</td>
<td>(Ile/I) Isoleucine</td>
<td>ACU</td>
</tr>
<tr>
<td></td>
<td>AUC</td>
<td></td>
<td>(Thr/T) Threonine</td>
</tr>
<tr>
<td></td>
<td>AUA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AUG[^A]</td>
<td>(Met/M) Methionine</td>
<td>ACG</td>
</tr>
<tr>
<td></td>
<td>GUU</td>
<td>(Val/V) Valine</td>
<td>GCU</td>
</tr>
<tr>
<td></td>
<td>GUC</td>
<td></td>
<td>(Ala/A) Alanine</td>
</tr>
<tr>
<td></td>
<td>GUA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GUG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Expanded genetic code

A diagram illustrating the process of readjusting the genetic code, specifically how UGA can be reassigned from a stop codon to Sec, and UAG can be reassigned from a stop codon to Pyl.

Diagram Description:*

- **UGA as Stop Codon:**
 - Endogenous tRNA
 - Orthogonal tRNA
 - Natural amino acid
 - Unnatural amino acid
 - ATP
 - AMP + PPI

- **UGA as Sec:**
 - Bacterial pathway
 - Archaeal and eukaryotic pathway
 - Sec-tRNA^Sec
 - ATP + Ser + tRNA^Sec
 - SerRS
 - ACU
 - SelB
 - mRNA
 - Ribosome
 - Selenoprotein product

- **UAG as Pyl:**
 - ATP + Pyl + tRNA^Pyl
 - PylRS
 - AUC
 - EF-Tu
 - Pyl protein product

Image credit: Nature Reviews | Microbiology
Recombinant proteins

Recombinant insulin:

https://www.youtube.com/watch?v=glT8iAQK8NQ&ab_channel=ScienceForStudent
de novo enzyme design

For interested in details:
Introduction to protein design – Part1: https://www.youtube.com/watch?v=0LetJMbu7uY&ab_channel=iBiology
Introduction to protein design – Part2: https://www.youtube.com/watch?v=ZrAwWx7meTk&ab_channel=iBiology
Evolvability of proteins from thermophiles

Aquifex aeolicus (Aa) – thermophilic bacteria

Overview of the course

artificial ribozymes and aptamers for efficient catalysis and recognition (SELEX, DNAzymes, foldamers);

unnatural base pairing – expansion of the genetic alphabet;

artificial genetic polymers and oligonucleotide analogues (XNA);

biosynthetic incorporation of unnatural aminoacids (UAAs) into proteins;

enzyme engineering – production of enzymes with unknown or unnatural properties, ab initio protein design, directed evolution, theozymes;

Artificial lipid vesicles as models for protocell multiplication;

design of artificial organisms