Encapsulation — essential for life

Assembly of amphiphilic monomers into protocellular compartments

Credit: Janet Iwasa

A three-dimensional view of a model protocell (a primitive cell) approximately 100 nanometers in diameter.

The protocell's fatty acid membrane allows nutrients and DNA building blocks to enter the cell and participate
in non-enzymatic copying of the cell's DNA. The newly formed strands of DNA remain in the protocell
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pH-dependent phase behavior of fatty acids in water
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Noncovalent nucleotide association with membranes
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Oligonucleotide interactions with lipid membranes
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The great optimism of the 1950's
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SYNTHETIC BIOLOGY

Oparin-Haldane Hypothesis

Uttraviolet radiation
from the Sun

Lightning in early
Earths atmosphere

h:,‘zyinemwbo“, Oparin (1924) and Haldane (1929) independently hypothesized
c-o e a scenario for the building of the chemical building blocks of

3

Lighining A:m‘i':’ HH " en life. Oparin in 1936 discussed further steps that would lead to
;?g‘f:j'euv “4" ogen dodde an origin of life from non-living material, which is popularly
Life obeys the laws of chemistry and physics energy g o SPOMENC0US called "abiogenesis". The illustration atAIeft summarizes the .
i n-gon = @ = m...q's = steps 9f whatlhas been called the Oparin-Haldane Hypothesis
Characteristics: ! & = for abiogenesis.
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We might need a little more detail on those last steps
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A The Oparin-Haldane Hypothesis suggests the action of natural
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Systems chemistry: bottom-up approach = to build life by self-assembly of biomolecules and biopolymers

Synthetic biology: top-down approach = to simplify currently living organisms and find the lowest limits of ,living”

The Minimal Genome Project
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The Minimal Genome Project

Mycoplasma genitalium

Mycoplasma laboratorium

Mycoplasma laboratorium is a designed, partially synthetic species of bacterium derived from the genome of Mycoplasma
genitalium. This effort in synthetic biology is being undertaken at the J. Craig Venter Institute by a team of approximately 20
scientists headed by Nobel laureate Hamilton Smith, and including DNA researcher Craig Venter and microbiologist Clyde A.
Hutchison Ill. Mycoplasma genitalium was chosen as it was the species with the smallest number of genes known at that

time: the genome consists of 482 genes comprising 582,970 base pairs, arranged on one circular chromosome (the smallest
genome of any known natural organism that can be grown in free culture). The researchers systematically removed genes to
find a minimal set of 382 genes that can sustain life — the synthetic organism Mycoplasma laboratorium.
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The Minimal Genome Project
The resulting Mycoplasma laboratorium bacterium is expected to be
able to replicate itself with its man-made DNA, making it the most
synthetic organism to date, although the molecular machinery and
chemical environment that would allow it to replicate would not be
synthetic. Craig Venter hopes to eventually synthesize bacteria to

manufacture hydrogen and biofuels, and also to absorb carbon
dioxide and other greenhouse gases.
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Global Transposon Mutagenesis ===t ommmmm—r—ricas
and a Minimal Mycoplasma
Genome S R e
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Robin T. Cline,' Owen White," Claire M. Fraser,’
Hamilton O. Smith,"{ J. Craig Venter';§

et £ e e gttty

Mycoplasma genitalium with 517 genes has the smallest gene complement of % . .*,
any indepandently replicating cell so far identified. Global transposcn mu-
tagenesis was used to identify nonessential genes in an effort to leam whether
the naturally occurring gene complement s a true minimal genome under
laboratory growth conditions. The positions of 2209 transposon insertions in
the complataly sequenced genomes of M, genitalium and its close relative M.
pneumoniae were determined by sequencing across the junction of the trans-
poson and the genomic DNA. These junctions defined 135 distinct sites of S CE e i i
insertion that were not lethal. The analysis suggests that 265 to 350 of the 480 - =uso, :

protein-coding genes of M. genitalium are essential under laboratory growth o sy e
conditions, incuding about 100 genes of unknown function. i
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Creation of a Bacterial Cell Controlled
by a Chemically Synthesized Genome
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Synthia

Synthia- "the first species.... to have its parents be a computer"

M. mycoides

The transfer
was successful

The altered cell
begins to make the
proteins of M. mycoides

On May 21, 2010, Science reported that the Venter group had successfully synthesized the genome of the bacterium
Mycoplasma mycoides from a computer record, and transplanted the synthesized genome into the existing cell of a
Mycoplasma capricolum bacterium that had had its DNA removed. The "synthetic" bacterium was viable, i.e. capable of
replicating billions of times. (The team had originally planned to use the M. genitalium bacterium they had previously been
working with, but switched to M. mycoides because the latter bacterium grows much faster, which translated into quicker
experiments.) —JCVI-syn1.0

Synthia

In 2016, the Venter Institute used genes from JCVI-syn1.0 to
synthesize an even smaller genome they call JCVI-syn3.0, that
contains 531,560 base pairs and 473 genes.

Originally in 1996, after comparing M. genitalium with
another small bacterium Haemophilus influenza, Arcady
Mushegian and Eugene Koonin had proposed that there
might be a common set of 256 genes which could be a
minimal set of genes needed for viability. In this new
organism, the number of genes can only be pared down to
473, 149 of which whose functions are completely unknown
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Clyde A. Hutchison I111,*,T, Ray-Yuan Chuangl,t,%, Vladimir N. Noskov1, Nacyra Assad-Garcial, Thomas J. Deerinck2, Mark H. Ellisman2, John
Gill3, Krishna Kannan3, Bogumil J. Karas1, Li Ma1, James F. Pelletier4,§, Zhi-Qing Qi3, R. Alexander Richter1, Elizabeth A. Strychalski4, Lijie
Sunl,||, Yo Suzukil, Billyana Tsvetanova3, Kim S. Wisel, Hamilton O. Smith1,3, John I. Glass1, Chuck Merryman1, Daniel G. Gibson1,3, J.

Craig Venter
Science 2016, 351 (6280), aad6253, p. 1414

Synthia

(A) The cycle for genome design, building by means
of synthesis and cloning in yeast, and testing for
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syn3.0.
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(C) A cluster of JCVI-syn3.0 cells, showing spherical
structures of varying sizes (scale bar, 200 nm).

Clyde A. Hutchison Ill et al., Science 2016, 351 (6280), aad6253, p. 1414

Synthia

Oligo Design
and Synthesis

Overlapping oligonucleotides (oligos) were designed,
chemically synthesized, and assembled into 1.4-kbp
fragments (red). After error correction and PCR
amplification, five fragments were assembled into 7-kbp
cassettes (blue). Cassettes were sequence-verified and
then assembled in yeast to generate one-eighth
molecules (green). The eight molecules were amplified
by RCA and then assembled in yeast to generate the
complete genome (orange).

Clyde A. Hutchison Ill et al., Science 2016, 351 (6280), aad6253, p. 1414




Synthia

(A) Cells derived from 0.2 um—filtered liquid cultures were
diluted and plated on agar medium to compare colony
size and morphology after 96 hours (scale bars, 1.0 mm).

(B) Growth rates in liquid static culture were determined
using a fluorescent measure (relative fluorescent units,
RFU) of double-stranded DNA accumulation over time
(minutes) to calculate doubling times (td). Coefficients of
determination (R2) are shown.

(C) Native cell morphology in liquid culture was imaged in
wet mount preparations by means of differential
interference contrast microscopy (scale bars, 10 um).
Arrowheads indicate assorted forms of segmented
filaments (white) or large vesicles (black).

(D) Scanning electron microscopy of syn1.0 and syn3.0
(scale bars, 1 um). The picture on the right shows a variety
of the structures observed in syn3.0 cultures.

Clyde A. Hutchison Ill et al., Science 2016, 351 (6280), aad6253, p. 1414
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Synthetic biology of E. coli

George Church (Harvard, MIT) - His team is the first to tackle a genome-scale change in
the genetic code. This was done in a 4.7 million basepair genome of an industrially useful
microbe (E. coli) with the goal of making a safer and more productive strain; this strain
uses non-proteinogenic amino acids in proteins and is metabolically and genetically
isolated from other species.
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Precise manipulation of chromosomes in vivo
enables genome-wide codon replacement
Farren J. Isaacs, Peter A. Carr, Harris H.
Wang,...JM Jacobson, GM Church - Science, 2011

Programming cells by multiplex genome engineering and accelerated evolution
Harris H. Wang, Farren J. Isaacs, Peter A. Carr, Zachary Z. Sun, George Xu, Craig R. Forest &
George M. Church Nature 460, 894-898(13 August 2009)
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Precise manipulation of chromosomes in vivo enables genome-wide
codon replacement
SJ Hwang, MC Jewett, JM Jacobson, GM Church - Science, 2011

MIT Vedia Lab Inventing a Better Future
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F. Cerrina et. al Nature Biotech 1999 p. 974

I Media Lab Inventing a Better Future

From Bits to Cells
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