

When life originated on Earth?

Hadean Eon (4600 Ma - 4000 Ma) • 4600 Ma – Earth formation

4500 Ma – Theia collides Earth → Moon

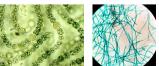
- calçada
- Earth's axis of rotation stabilized, which allowed abiogenesis • 4460 Ma – oldest known lunar rock - Lunar sample 67215, Apollo 15
- 4404 Ma the oldest known material of terrestrial origin zircon mineral (Australia) isotopic composition of oxygen suggests presence of water on the Earth's surface
- 4374 Ma the oldest consistently dated zircon

Archean Eon (4000 Ma - 2500 Ma)

- 4031 Ma formation of the Acastia Gneiss

 the oldest known intact crustal fragment on Earth
- 4100 Ma 3800 Ma Late Heavy Bombardment (LHB)
- 3800 Ma greenstone belt (Greenland) isotope frequency consistent with presence of life

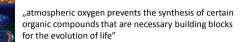
1 Ma = 1 million years


When life originated on Earth?

- 4100 Ma "remains of biotic life" found in zirconites (Australia)
- 3900 Ma 2500 Ma cells remaining procaryotes appear first chemoautotrophes: oxidize inorganic material to get energy, CO₂ – carbon source
- 3700 Ma oldest evidences for life biogenic graphite in Isua greenstone belt (Greenland)
- c.a. 3500 Ma lifetime of the Last Universal Common Ancestor (LUCA)
- split between bacteria and archaea
- 3480 Ma oldest fossils microbial mat (bacteria and archaea) fossils sandstone, Australia
- 3000 Ma photosynthesizing cyanobacteria evolved water used as reducing agent
 → production of oxygen → oxidation of iron into iron ore (FeO_x) (banded iron)
- 2500 Ma free oxygen in atmosphere → Great Oxygenation Event ("Oxygen catastrophe") extinction of most anaerobic organisms

extremophiles

Archaea (Halobacteria) cyanobacter


The origin of life on Earth

- 384-322 BC Aristotle *abiogenesis*: spontaneous generation of life forms from unanimated matter (flies from old meat, mice from dirty hay)
- 1665 AC Robert Hooke (microscope) discovery of bacteria considered a proof for spontaneous generation (bacteria division was not observed by then)
- 1668 Francisco Redi *biogenesis*: every life comes from another life
- 1861 Louis Pasteur bacteria do not grow in sterilized nutrient-rich medium, unless inoculated from outside; abiogenesis under current conditions regarded as impossible and therefore disproven

Panspermia – idea that life came to Earth from elsewhere in the Universe (e.g. Extremophilic organisms hibernated and traveling inside meteorites) – Anaxagoras (400ts BC), Berzelius, Kelvin, von Helmholtz, Arrhenius...:

Pseudo-panspermia – biorelevant molecules delivered from outside of Earth (meteorites)

The origin of biorelevant molecules on Earth Alexander Oparin (USSR, 1894-1980) 1. The early Earth had a chemically reducing atmosphere. John B. S. Haldane (UK. India, 1892-1964)

2. This atmosphere, exposed to energy in various forms, produced simple organic compounds ("monomers"). 3. These compounds accumulated in a "soup" that may have concentrated at various locations (shorelines, oceanic vents etc.).

4.By further transformation, more complex organic polymers - and ultimately life developed in the soup.

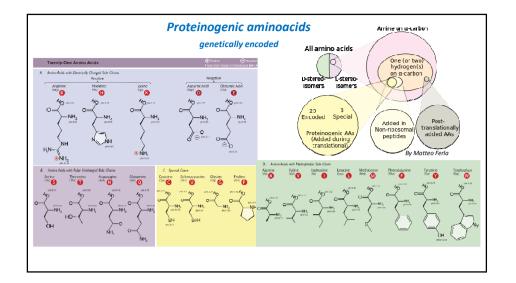
"Primordial soup"

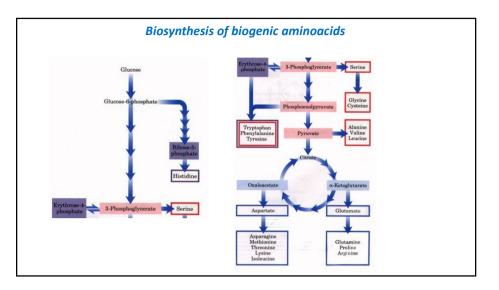
"Biopoeiesis" – prebiotic oceans as "hot diluted soup" under anoxic conditions: e.g. CO₂, NH₃, H₂O

"Life arose through the slow evolution of chemical systems of increasing complexity"

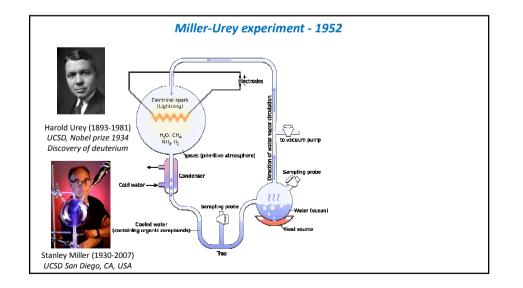
Basic classes of biomolecules

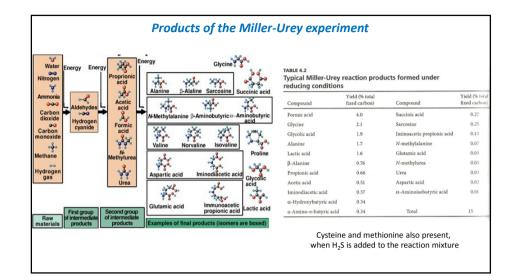
- Aminoacids
- Lipids
- Carbohydrates (sugars)
- Nucleotides
- Nucleosides (sugar+nucleotide)

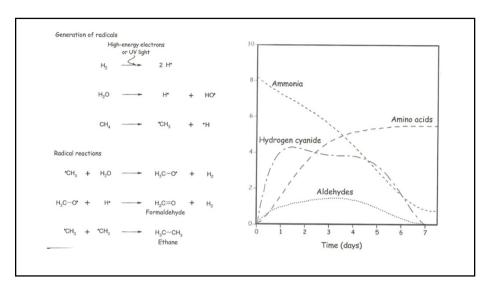

Vital chemical reactions

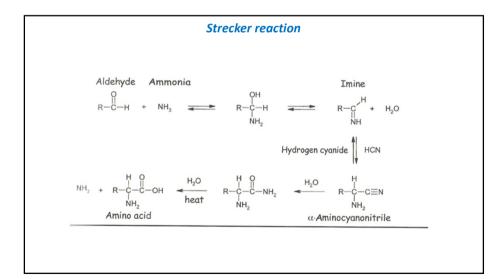

Aminoacid polymerization \rightarrow ribosome nucleotide polymerization \rightarrow DNA/RNA polymerases

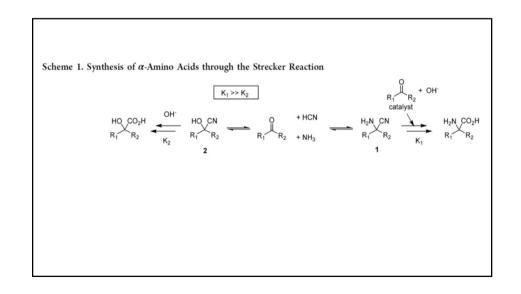
Experimental prebiotic organic chemistry


- Prebiotic chemistry deals with reactive substances (like HCN) often at concentrations much higher than probable in prebiotic environments
- Prebiotic experiments usually performed with very small number of pure substrates
- Early protometabolic processes might have used a broader set of organic compounds than the one contemporary biochemistry
 - No evidences/fossils from that early Earth \rightarrow we try to SPECULATIVELY fit different examples of chemical reactivity into an EXPECTED OUTCOME which we know as contemporary biochemistry


• Most of the discussed transformations are performed by highly specific and evolved enzymes at high speed and efficiency - prebiotic chemistry is supposed to be much slower and less efficient, but more robust and diverse






Reduced Neutral Oxic Carbon (C) CH ₄ CO, CO ₂ CO ₂ Nitrogen (N) NH ₃ N ₂ N ₂ Oxygen (O) H ₂ O H ₂ O, CO, CO ₂ O ₂ Hydrogen (H) H ₂ , CH ₄ , NH ₃ , H ₂ O H ₂ O H ₂ O	Carbon (C) CH ₄ CO, CO ₂ CO ₂ Nitrogen (N) NH ₃ N ₂ N ₂ Oxygen (O) H ₂ O H ₂ O, CO, CO ₂ O ₂	Atmosphere	composition fo	or young terre	strial planets
Carbon (C) CH ₄ CO, CO ₂ CO ₂ Nitrogen (N) NH ₃ N ₂ N ₂ Oxygen (O) H ₂ O H ₂ O, CO, CO ₂ O ₂	Carbon (C) CH ₄ CO, CO ₂ CO ₂ Nitrogen (N) NH ₃ N ₂ N ₂ Oxygen (O) H ₂ O H ₂ O, CO, CO ₂ O ₂				
Carbon (C) CH ₄ CO, CO ₂ CO ₂ Nitrogen (N) NH ₃ N ₂ N ₂ Oxygen (O) H ₂ O H ₂ O, CO, CO ₂ O ₂	Carbon (C) CH ₄ CO, CO ₂ CO ₂ Nitrogen (N) NH ₃ N ₂ N ₂ Oxygen (O) H ₂ O H ₂ O, CO, CO ₂ O ₂				
Carbon (C) CH ₄ CO, CO ₂ CO ₂ Nitrogen (N) NH ₃ N ₂ N ₂ Oxygen (O) H ₂ O H ₂ O, CO, CO ₂ O ₂	Carbon (C) CH ₄ CO, CO ₂ CO ₂ Nitrogen (N) NH ₃ N ₂ N ₂ Oxygen (O) H ₂ O H ₂ O, CO, CO ₂ O ₂				
Carbon (C) CH ₄ CO, CO ₂ CO ₂ Nitrogen (N) NH ₃ N ₂ N ₂ Oxygen (O) H ₂ O H ₂ O, CO, CO ₂ O ₂	Carbon (C) CH ₄ CO, CO ₂ CO ₂ Nitrogen (N) NH ₃ N ₂ N ₂ Oxygen (O) H ₂ O H ₂ O, CO, CO ₂ O ₂				
Carbon (C) CH ₄ CO, CO ₂ CO ₂ Nitrogen (N) NH ₃ N ₂ N ₂ Oxygen (O) H ₂ O H ₂ O, CO, CO ₂ O ₂	Carbon (C) CH ₄ CO, CO ₂ CO ₂ Nitrogen (N) NH ₃ N ₂ N ₂ Oxygen (O) H ₂ O H ₂ O, CO, CO ₂ O ₂				
Nitrogen (N) NH ₃ N ₂ N ₂ Oxygen (O) H ₂ O H ₂ O, CO, CO ₂ O ₂	Nitrogen (N) NH ₃ N ₂ N ₂ Oxygen (O) H ₂ O H ₂ O, CO, CO ₂ O ₂		Reduced	Neutral	Охіс
Oxygen (O) H ₂ O H ₂ O, CO, CO ₂ O ₂	Oxygen (0) H ₂ O H ₂ O, CO, CO ₂ O ₂	Carbon (C)	CH ₄	CO, CO ₂	CO ₂
		Nitrogen (N)	NH ₃	N ₂	N ₂
Hydrogen (H) H ₂ , CH ₄ , NH ₃ , H ₂ O H ₂ O H ₂ O H ₂ O	Hydrogen (H) H ₂ , CH ₄ , NH ₃ , H ₂ O H ₂ O H ₂ O H ₂ O	Oxygen (O)	H ₂ O	H ₂ O, CO, CO ₂	0 ₂
		Hydrogen (H)	H ₂ , CH ₄ , NH ₃ , H ₂ O	H ₂ O	H ₂ O

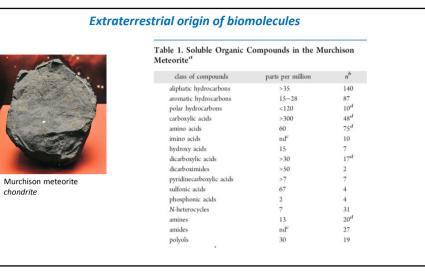
Proprionic acid	ergy Glycine	TABLE 4.3 Yields of the α-amin Miller-Urey experim		the	
Aldehydes	Alanine β-Alaline Sarcosine Succinic acid	Amino acid	Yield (µM)	Amino Acid	Yield (µM)
cyanide Formic acid	M-Methylalanine β-Aminobutyric α-Aminobutyric acid	Glycine	440	Norleucine	6
ૢઙૺૢૢ૱	Valine Norvaline Isovaline	Alanine	790	Isoleucine	5
Methylurea	Proline Proline	α-Aminobutyric acid	270	Serine	5
Urea	Aspartic acid Iminodiacetic acid	Norvaline	61	Alloisoleucine	5
Urea	acid start acid	Aspartate	34	Isovaline	5
Second group of intermediate	Glutamic acid Immunoacetic propionic acid Lactic acid	α-Aminoisobutyric acid	30	Proline	2
le Second group of intermediate products	Examples of final products (isomers are boxed)	Valine	20	Threonine	1
		Leucine	11	Allothreonine	1
		Glutamate	8	Tert-Leucine	0.02

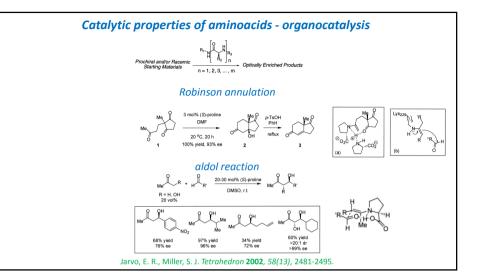
Ca

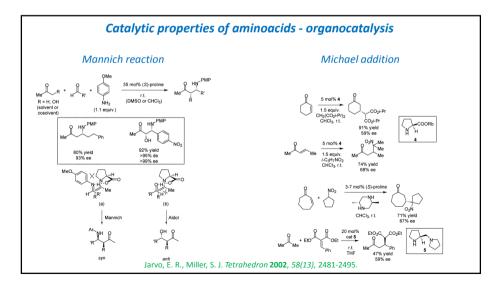
Hyd

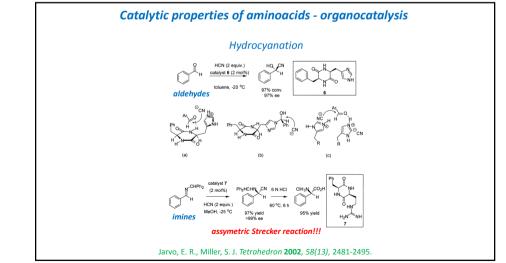
R

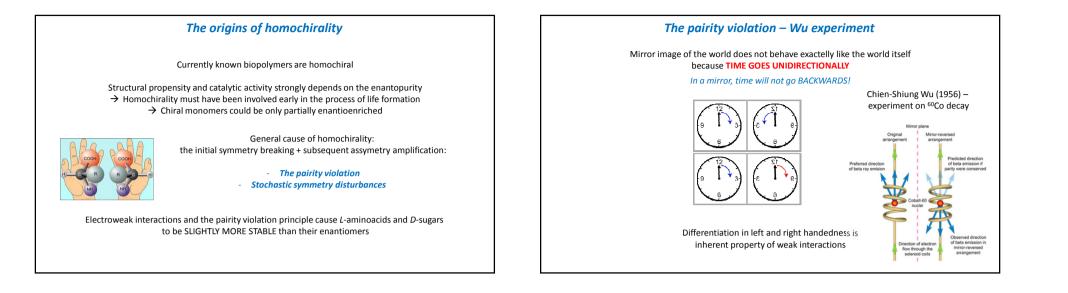
	L		1	1	T
Researcher(s)	Year		Energy source	Results	Probability
Miller	1953	CH_4 , NH_3 , H_2O , H_2	Electric discharge	Simple amino acids, organic compounds	unlikely
Abelson	1956	CO, CO ₂ , N ₂ , NH ₃ , H ₂ , H2O	Electric discharge	Simple amino acids, HCN	unlikely
Groth and Weyssenhoff	1957	CH ₄ , NH ₃ , H ₂ O	Ultraviolet light (1470–1294?)	Simple amino acids (low yields)	under special conditions
Bahadur, et al.	1958	Formaldehyde, molybdenum oxide	Sunlight (photosynthesis)	Simple amino acids	possible
Pavolvskaya and Pasynskii	1959	Formaldehyde, nitrates	High pressure Hg lamp (photolysis)	Simple amino acids	possible
Palm and Calvin	1962	СH ₄ , NH ₃ , H ₂ O	Electron irradiation	Glycine, alanine, aspartic acid	under special conditions
Harada and Fox	1964	СH ₄ , NH ₃ , H ₂ O	Thermal energy (900–1200° C)	14 of the "essential" amino acids of proteins	under special conditions
Oró	1968	CH ₄ , NH ₃ , H ₂ O	Plasma jet	Simple amino acids	unlikely
Bar-Nun et al.	1970	CH ₄ , NH ₃ , H ₂ O	Shock wave	Simple amino acids	under special conditions
Sagan and Khare	1971	CH ₄ , C ₂ H ₆ , NH ₃ , H ₂ O, H2S	Ultraviolet light (>2000 ?)	Simple amino acids (low vields)	under special conditions

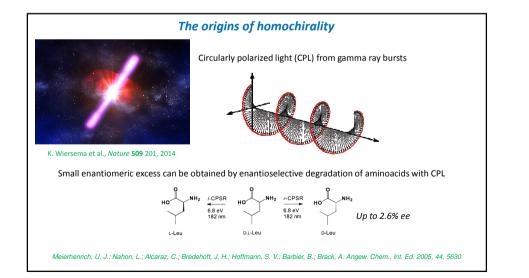

oshino et al.	1971	H ₂ , CO, NH ₃ ,	Temperature of 700°C	Glycine, alanine,	unlikely
		montmorillonite		glutamic acid, serine, aspartic acid, leucine, lysine, arginine	
Lawless and Boynton	1973	СН ₄ , NH ₃ , H ₂ O	Thermal energy	Glycine, alanine, aspartic acid, ?-alanine, N-methyl-?-alanine, ?-amino-n-butyric acid.	under special conditions
Yanagawa et al.	1980	Various sugars, hydroxylamine, inorganic salts,	Temperature of 105°C	Glycine, alanine, serine, aspartic acid, glutamic acid	under special conditions
Kobayashi et al.	1992	CO, N ₂ , H ₂ O	Proton irradiation	Glycine, alanine, aspartic acid, ?-alanine, glutamic acid, threonine, ?-aminobutyric acid, serine	possible
Hanic, et al.	1998	CO2, N2 H2O	Electric discharge	Several amino acids	possible

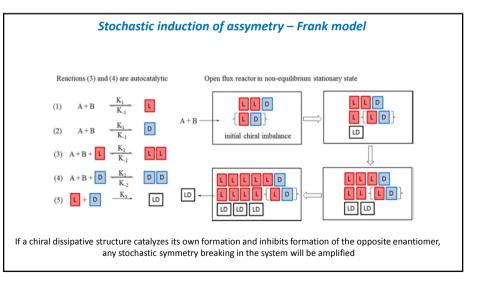

Aminoacid production under hydrothermal conditions

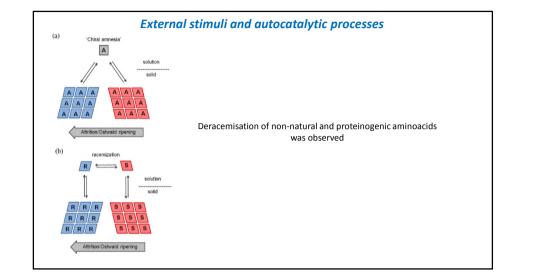

Ni(OH)₂/KCN/CO in alkaline aqueous conditions (80-120^oC) → α -amino and α -hydroxyacids Huber, C.; Wächtershäuser, G. *Science* **2006**, *314*, 630–632

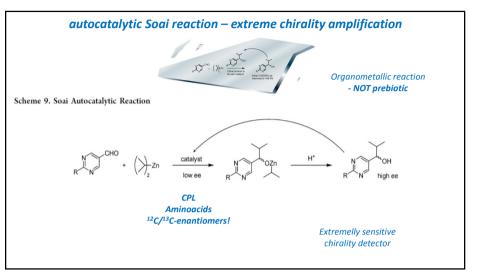

Ca(OH)₂/NiSO₄/KCN/CO in alkaline (pH 9.1-12.9) aqueous conditions (145-280⁰C) → α -amino and α -hydroxyacids (higher yields): glycine, alanine, serine, glycolate, lactate, glycerate

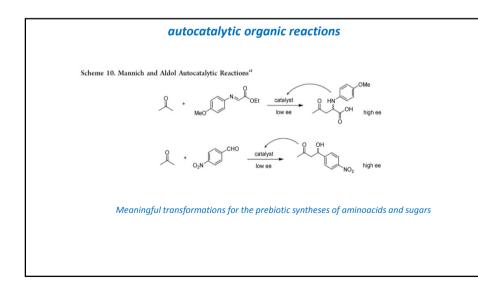

Huber, C.; Eisenreich, H.; Wächtershäuser, G. Tetrahedron Lett. 2010, 51, 1069-1071



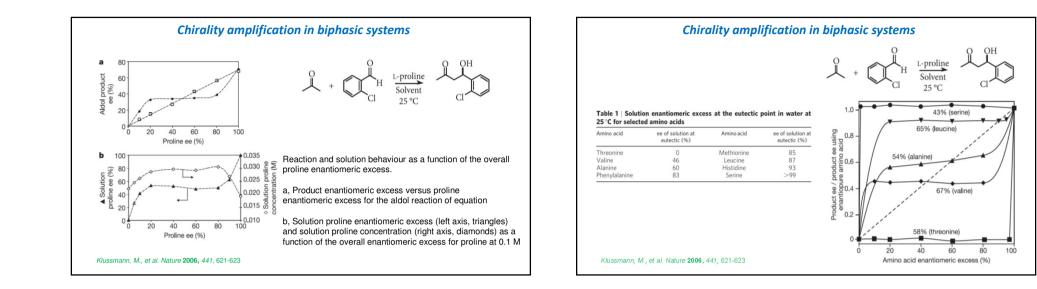


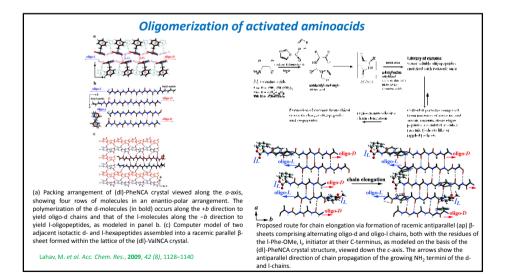


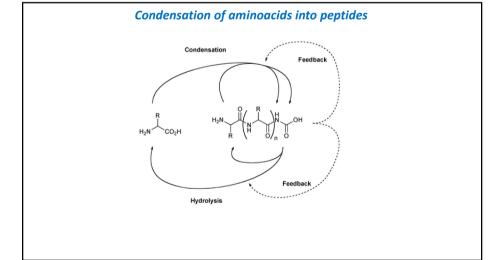


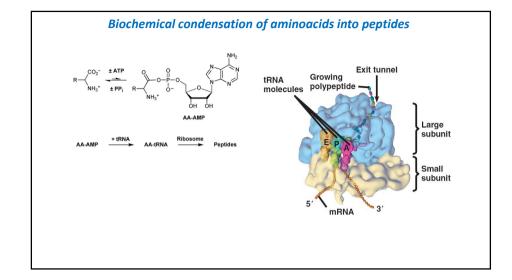


0

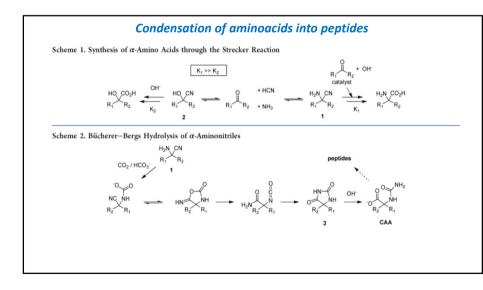

Organocatalysis – the origin of homochirality

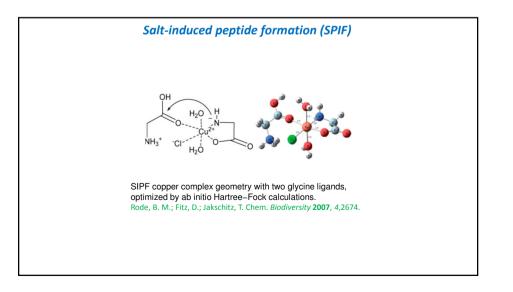

Table 1. Enantiomeric concentration amplification of phenylalanine after two crystallizations from water

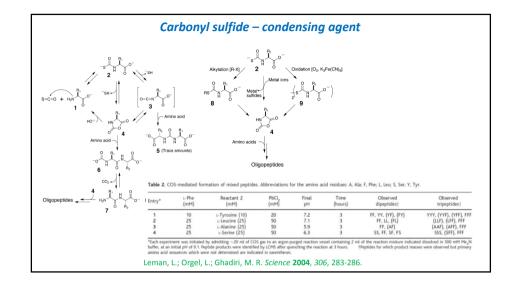

Component	Initial ee, %	Final ee, %
D	10	90.0 ± 3.7
	5	91.7 ± 1.5
	1	87.2 ± 2.0
L	10	88.3 ± 1.1
	5	88.6 ± 0.9
	1	90.9 ± 0.3

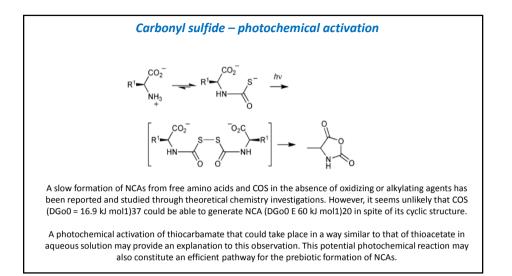

Solutions with as little as 1% enantiomeric excess (ee) of D- or L-phenylalanine are amplified to 90% ee (a 95/5 ratio) by two successive evaporations to precipitate the racemate. Such a process on the prebiotic earth could lead to a mechanism by which meteoritic chiral *a*-alkyl amino acids could form solutions with high ee values that were needed for the beginning of biology.

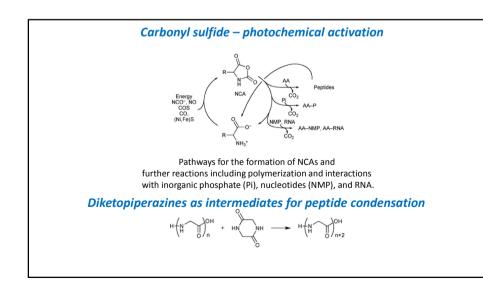
Breslow, R., Levine, M. Proc. Natl. Acad. Sci. USA 2006, 103(35), 12979-12980










NUL CONUL		
NH ₂ CONH ₂	$CO_2 + NH_3$	-16^{a}
COS (g)	$CO_2 + H_2S$	-17^{a}
	Phosphate	-19^{b}
CO (g)	HCO ₂ H	-16^{a}
HNCO	$CO_2 + NH_3$	-54^{a}
HCN	$HCO_2H + NH_3$	-75^{a}
RCN	$RCO_2H + NH_3$	-80^{c}
NH ₂ CN	Isourea	-83^{d}
HNCNH	Isourea	-97^{d}
HCCH (g)	CH ₃ CHO	-112^{a}
	Pyrophosphate CO (g) HNCO HCN RCN NH ₂ CN HNCNH	$\begin{array}{llllllllllllllllllllllllllllllllllll$

