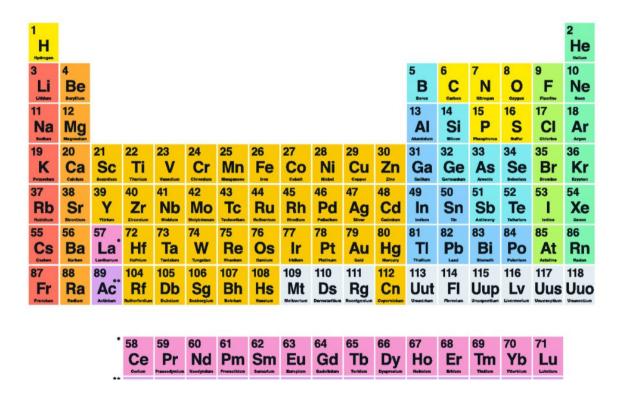

Constrains for the origin of life

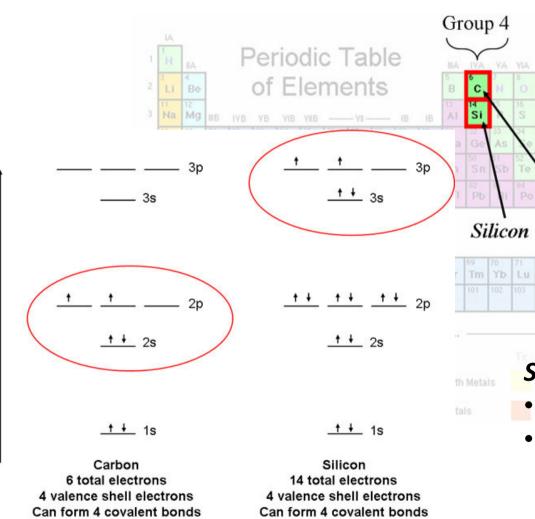
Elements of life

Energy for life

Solvents for life



Other limitations


Carbon-based life well-justified:

- self-replicating chemical systems need sufficient complexity
- Carbon is tetravalent and can form complex structures (unlike H, He, Li, O, or F)
- Fourth most common element in the Solar system

Carbon

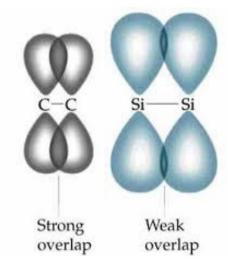
Silicon:

Star Trek: The Devil in the Dark

- can form multivalent structures
- Earth's surface 2nd most abundant element

Si-O bond far more stable than Si-Si, Si-H or Si-N

→ oxidation almost irreversible



Energy of C-C bond comparable to C-O, C-N and C-H

→ easy exchange between elements

O CO₂

Multiple bonds of carbon are stabilized, silicon - destabilized

Methane, CH₄
(flammable)
(gas at room temperature)
(stable)

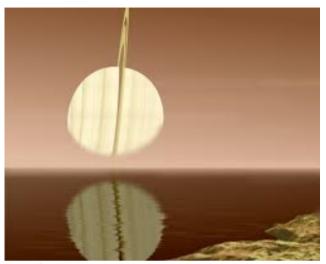
Silane, SiH₄
(flammable)
(gas at room temperature)
(extremely unstable)

DOW CORNING

Silicon is less well suited to support complex chemistry than carbon.

Other atoms are far worse than silicon

Life requires a solvent to move molecules around



Terrestrial organsims based on water

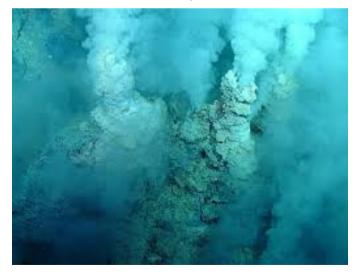
Advantages of water:

- ice floats → nutrient transport, temperature modulation
- High heat capacity 4.2 J/g*⁰C (3x of rocks or metals), heat of vaporization 41 J/g
- → both help to moderate Earth's climate
- Liquidity range 100°C
- High dielectric constant water is a very good solvent
- High molecular density 55.5 mol/L "hydrophobic effect":
 H₂O forces dissolved molecules to organize to minimize the enthropic cost
- H, O very abundant in the Universe (1st, 3rd)
 H₂O 2nd most abundant after H₂

Alternative solvents HF, NH_3 , CH_4 , H_2


TABLE 1.3
Physical properties of potential biological solvents

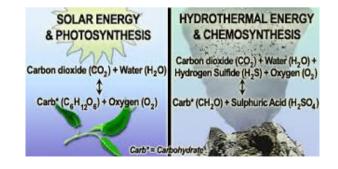
Solvent	Formula	Liquid range (°C, at atmospheric pressure)	Molar density (mol/L)	Heat capacity (J/g K)	Heat of vaporization (J/g)	Dielectric constant	Density ratio: solid to liquid
Water	$\rm H_2O$	0 to +100	55.5	4.2	41	80	0.9
Hydrogen fluoride	HF	-83 to +20	48.0	3.3	0.4	84	1.8
Ammonia	NH_3	−78 to −34	40.0	4.6	23	25	1.2
Methane	CH_4	−182 to −161	26.4	2.9	8	2	1.1
Hydrogen	H_2	-259 to -253	35.0	0.008	0.5	1.	1.3


HF – similar physical properties to water, but fluorine cosmologically rare (100,000 x less than oxygen)

Energy for life

The energy of stars

Geothermal/chemical


Life creates order from disorder → need for energy

High energy photons absorbed by plants

→ nutrients absorbed by animals;
both patterns used to run metabolic processes

However, not the only available source of energy

→ Further lecture on extremophiles

Energy-producing oxidation reaction	Type of bacteria
2H ₂ + O ₂ → 2H ₂ O	Hydrogen bacteria
$2H_2S \longrightarrow S_2O_3^2 \longrightarrow SO_4^2$	Colorless sulfur bacteria
Fe ²⁺ ──Fe ³⁺	Iron bacteria
NH ₃ ── NO ₂ ·── NO ₃ ·	Nitrate, nitrite bacteria

Other constrains for the origin of life

Life requires a condensed medium → rocky solid planets with available solvent not enough support on gas giant planets (Jupiter)

Life requires time to be formed → unstable environment (overheating, asteroids, supernovae) is detrimental

