Aminoacids

Biosynthesis of biogenic aminoacids

Atmosphere composition for young terrestrial planets

	Reduced	Neutral	Oxic
Carbon (C)	CH ₄	CO, CO ₂	CO ₂
Nitrogen (N)	NH ₃	N ₂	N ₂
Oxygen (O)	H ₂ O	H ₂ O, CO, CO ₂	0 ₂
Hydrogen (H)	H_2 , CH_4 , NH_3 , H_2O	H ₂ O	H ₂ O

Miller-Urey experiment - 1952

UCSD San Diego, CA, USA

Products of the Miller-Urey experiment

TABLE 4.2

Typical Miller-Urey reaction products formed under reducing conditions

Compound	Yield (% total fixed carbon)	Compound	Yield (% tota) fixed carbon)
Formic acid	4.0	Succinic acid	0.27
Glycine	2.1	Sarcosine	0.25
Glycolic acid	1.9	Iminoacetic propionic acid	0.13
Alanine	1.7	N-methylalanine	0.07
Lactic acid	1.6	Glutamic acid	0.05
β-Alanine	0.76	N-methylurea	0.05
Propionic acid	0.66	Urea	0.03
Acetic acid	0.51	Aspartic acid	0.02
Iminodiacetic acid	0.37	α-Aminoisobutyric acid	0.01
α -Hydroxybutyric acid	0.34		
α-Amino- <i>n</i> -butyric acid	0.34	Total	15

Cysteine and methionine also present, when H_2S is added to the reaction mixture

Strecker reaction

Scheme 1. Synthesis of α -Amino Acids through the Strecker Reaction

α -Aminoacid production in the Miller-Urey experiment

TABLE 4.3 Yields of the α-amino acids in the Miller-Urey experiment

Amino acid	Yield (µM)	Amino Acid	Yield (µM)
Glycine	440	Norleucine	6
Alanine	790	Isoleucine	5
α-Aminobutyric acid	270	Serine	5
Norvaline	61	Alloisoleucine	5
Aspartate	34	Isovaline	5
α -Aminoisobutyric acid	30	Proline	2
Valine	20	Threonine	1
Leucine	11	Allothreonine	1
Glutamate	8	Tert-Leucine	0.02

Note: Proteogenic amino acids in bold type.

Aminoacid production under hydrothermal conditions

Ni(OH)₂/KCN/CO in alkaline aqueous conditions (80-120^oC) $\rightarrow \alpha$ -amino and α -hydroxyacids Huber, C.; Wächtershäuser, G. *Science* **2006**, *314*, 630–632

 $Ca(OH)_2/NiSO_4/KCN/CO$ in alkaline (pH 9.1-12.9) aqueous conditions (145-280^oC) \rightarrow α -amino and α -hydroxyacids (higher yields): glycine, alanine, serine, glycolate, lactate, glycerate

Huber, C.; Eisenreich, H.; Wächtershäuser, G. Tetrahedron Lett. 2010, 51, 1069-1071

Extraterrestrial origin of biomolecules

Extraterrestrial origin of biomolecules

Murchison meteorite *chondrite*

Table 1. Soluble Organic Compounds in the Murchison Meteorite a

class of compounds	parts per million	n ^b
aliphatic hydrocarbons	>35	140
aromatic hydrocarbons	15-28	87
polar hydrocarbons	<120	10^d
carboxylic acids	>300	48^d
amino acids	60	75^d
imino acids	nd ^c	10
hydroxy acids	15	7
dicarboxylic acids	>30	17^d
dicarboximides	>50	2
pyridinecarboxylic acids	>7	7
sulfonic acids	67	4
phosphonic acids	2	4
N-heterocycles	7	31
amines	13	20^d
amides	nd ^c	27
polyols	30	19

Catalytic properties of aminoacids - organocatalysis

Jarvo, E. R., Miller, S. J. *Tetrahedron* **2002**, *58(13)*, 2481-2495.

Catalytic properties of aminoacids - organocatalysis

Mannich reaction

Michael addition

Catalytic properties of aminoacids - organocatalysis

Hydrocyanation

Jarvo, E. R., Miller, S. J. *Tetrahedron* **2002**, *58(13)*, 2481-2495.

The origins of homochirality

Currently known biopolymers are homochiral

Structural propensity and catalytic activity strongly depends on the enantopurity
→ Homochirality must have been involved early in the process of life formation
→ Chiral monomers could be only partially enantioenriched

General cause of homochirality: the initial symmetry breaking + subsequent assymetry amplification:

- The pairity violation
- Stochastic symmetry disturbances

Electroweak interactions and the pairity violation principle cause *L*-aminoacids and *D*-sugars to be SLIGHTLY MORE STABLE than their enantiomers

Differentiation in left and right handedness is inherent property of weak interactions

Chien-Shiung Wu (1956) – experiment on ⁶⁰Co decay

The origins of homochirality

K. Wiersema et al., *Nature* **509** 201, 2014

Circularly polarized light (CPL) from gamma ray bursts

Small enantiomeric excess can be obtained by enantioselective degradation of aminoacids with CPL

Meierhenrich, U. J.; Nahon, L.; Alcaraz, C.; Bredehoft, J. H.; Hoffmann, S. V.; Barbier, B.; Brack, A. Angew. Chem., Int. Ed. 2005, 44, 5630

Stochastic induction of assymetry – Frank model

Reactions (3) and (4) are autocatalyticOpen flux reactor in non-equilibrium stationary state(1)A + B K_1 L(2)A + B K_1 D(2)A + B K_1 D(3)A + B + L K_2 L(4)A + B + D K_2 L(5)L + D K_3 LD(1)L L L LL(2) K_3 LD(3)A + B + L K_2 (4)A + B + D K_2 (5)L + D K_3 (6)L DLD(7)L D(8)L D(9)L D(10)L D(10)L D(11)L D(12)L D(13)L D(14)L D(15)L + D(16)L D<t

If a chiral dissipative structure catalyzes its own formation and inhibits formation of the opposite enantiomer, any stochastic symmetry breaking in the system will be amplified

autocatalytic Soai reaction – extreme chirality amplification

Organometallic reaction - NOT prebiotic

Scheme 9. Soai Autocatalytic Reaction

Extremelly sensitive chirality detector

autocatalytic Soai reaction – extreme chirality amplification

autocatalytic Soai reaction – extreme chirality amplification

autocatalytic organic reactions

Scheme 10. Mannich and Aldol Autocatalytic Reactions^a

Meaningful transformations for the prebiotic syntheses of aminoacids and sugars

autocatalytic organic reactions

Organocatalysis – the origin of homochirality

Component	Initial ee, %	Final ee, %
D	10	90.0 ± 3.7
	5	91.7 ± 1.5
	1	87.2 ± 2.0
L	10	88.3 ± 1.1
	5	$\textbf{88.6} \pm \textbf{0.9}$
	1	90.9 ± 0.3

Table 1. Enantiomeric concentration amplification of phenylalanine after two crystallizations from water

Solutions with as little as 1% enantiomeric excess (ee) of D- or L-phenylalanine are amplified to 90% ee (a 95/5 ratio) by two successive evaporations to precipitate the racemate. Such a process on the prebiotic earth could lead to a mechanism by which meteoritic chiral α -alkyl amino acids could form solutions with high ee values that were needed for the beginning of biology.

Breslow, R., Levine, M. Proc. Natl. Acad. Sci. USA 2006, 103(35), 12979-12980

Chirality amplification in biphasic systems

Reaction and solution behaviour as a function of the overall proline enantiomeric excess.

a, Product enantiomeric excess versus proline enantiomeric excess for the aldol reaction of equation

b, Solution proline enantiomeric excess (left axis, triangles) and solution proline concentration (right axis, diamonds) as a function of the overall enantiomeric excess for proline at 0.1 M

Klussmann, M., et al. Nature 2006, 441, 621-623

Chirality amplification in biphasic systems

Table 1 | Solution enantiomeric excess at the eutectic point in water at 25 $^\circ C$ for selected amino acids

Amino acid	ee of solution at eutectic (%)	Amino acid	ee of solution at eutectic (%)
Threonine	0	Methionine	85
Valine	46	Leucine	87
Alanine	60	Histidine	93
Phenylalanine	83	Serine	>99

Klussmann, M., et al. Nature 2006, 441, 621-623

Condensation of aminoacids into peptides

Biochemical condensation of aminoacids into peptides

Nature Publishing Group, www.nature.com/nrg/multimedia

Prebiotically relevant peptide condensation agents

Entry	Activating agent	Hydrolysis/ hydration product	$\Delta G^{o\prime}/kJ \text{ mol}^{-1}$
1	NH ₂ CONH ₂	$CO_2 + NH_3$	-16^{a}
2	COS (g)	$CO_2 + H_2S$	-17^{a}
3	Pyrophosphate	Phosphate	-19^{b}
4	CO (g)	HCO ₂ H	-16^{a}
5	HNCO	$CO_2 + NH_3$	-54^{a}
6	HCN	$HCO_2H + NH_3$	-75^{a}
7	RCN	$RCO_2H + NH_3$	-80^{c}
8	NH ₂ CN	Isourea	-83^{d}
9	HNCNH	Isourea	-97^{d}
10	HCCH (g)	CH ₃ CHO	-112^{a}

Danger, G.; Plasson, R.; Pascal, R. Chem. Soc. Rev. 2012, 41, 5416.

SIPF copper complex geometry with two glycine ligands, optimized by ab initio Hartree–Fock calculations.

Rode, B. M.; Fitz, D.; Jakschitz, T. Chem. *Biodiversity* **2007**, *4*,2674.

Condensation of aminoacids into peptides

Scheme 1. Synthesis of α -Amino Acids through the Strecker Reaction

Scheme 2. Bücherer–Bergs Hydrolysis of α -Aminonitriles

Carbonyl sulfide – condensing agent

Carbonyl sulfide – condensing agent

*Each experiment was initiated by admitting ~20 ml of COS gas to an argon-purged reaction vessel containing 2 ml of the reaction mixture indicated dissolved in 500 mM Me₃N buffer, at an initial pH of 9.1. Peptide products were identified by LCMS after quenching the reaction at 3 hours. amino acid sequences which were not determined are indicated in parentheses.

Leman, L.; Orgel, L.; Ghadiri, M. R. Science 2004, 306, 283-286.

Carbonyl sulfide – photochemical activation

A slow formation of NCAs from free amino acids and COS in the absence of oxidizing or alkylating agents has been reported and studied through theoretical chemistry investigations. However, it seems unlikely that COS ($\Delta G_0 = 16.9 \text{ kJ/mol}$) could be able to generate NCA ($\Delta G_0 = 60 \text{ kJ/mol}$) in spite of its cyclic structure.

A photochemical activation of thiocarbamate that could take place in a way similar to that of thioacetate in aqueous solution may provide an explanation to this observation. This potential photochemical reaction may also constitute an efficient pathway for the prebiotic formation of NCAs.

Carbonyl sulfide – photochemical activation

Pathways for the formation of NCAs and further reactions including polymerization and interactions with inorganic phosphate (Pi), nucleotides (NMP), and RNA.

Diketopiperazines as intermediates for peptide condensation

$$H \left(\underset{H}{N} \right)_{n}^{OH} + H_{N} \left(\underset{H}{N} \right)_{n+2}^{OH} \rightarrow H \left(\underset{H}{N} \right)_{n+2}^{OH}$$

Condensation of aminoacids into peptides

Prebiotic peptide condensation in water

P. Canavelli, S. Islam & M. W. Powner Nature 2019, 571, 546-549.

GADV-protein world

Basic aminoacids for primitive genetic code?

Primordial genetic code might have involved only 4 "GNC" codons:

- GGC for glycine
- GCC for alanine
- GAC for aspartic acid
 - GUC for valine

Later, the ,GNC' code probably evolved into ,SNS' code (S = G/C, N = A, U, G, C) – 16 codons encoding 10 basic aminoacids (Gly, Ala, Asp, Val, Glu, Leu, Pro, His, Glu, Arg)

Reduced aminoacid alphabet

9-aminoacid alphabet is sufficient to construct functional enzymes

Aminoacids: Asp, Glu, Asn, Lys, Phe, Ile, Leu, Met, Arg

AroQ structure and active site. *A*, the homodimeric EcCM is shown with a transition state analog inhibitor bound at its active sites; the two identical polypeptide chains are colored *blue* and *pink* for clarity. *B*, proposed interactions between residues in the evolved active site of the simplified enzyme and the transition state analog inhibitor, compound **1** (*red*), based on the x-ray structure of EcCM. Residues Gln⁸⁸ and Ser⁸⁴ in EcCM are substituted with Glu⁸⁸ and Asn⁸⁴ in the 9-amino acid enzyme. Residue numbers are referenced to EcCM.

Walter, K. U., Vamvaca, K., Hilvert, D. J. Biol. Chem. 2005, 280,37742-37749.

Evolution of a metalloenzyme from short peptides

Zinc-mediated assembly of helix-turn-helix fragments, followed by fusion and asymmetric diversification, afforded MID1sc10, an efficient metalloesterase.

S. Studer, D.A. Hansen, Z. Pianowski, P.R.E. Mittl, A. Debon, S.L. Guffy, B.S. Der, B. Kuhlman, D. Hilvert Science, 2018, 362, 1285-1288

Evolution of a metalloenzyme from short peptides

Michaelis-Menten plots for MID1sc (yellow and inset) and MID1sc10 (green) show a 70,000-fold improvement in hydrolysis efficiency for (S)-configured 1 after optimization.

S. Studer, D.A. Hansen, Z. Pianowski, P.R.E. Mittl, A. Debon, S.L. Guffy, B.S. Der, B. Kuhlman, D. Hilvert Science, 2018, 362, 1285-1288

Aminoacids - Summary

Prebiotic generation plausible – variants of the Miller-Urey experiment Strecker-type of chemistry likely

Aminoacids are good catalysts, can perform various chemical transformations

The origin of homochirality in the Universe caused by the pairity violation and stochastic fluctuations

Chirality amplification possible in numerous chemical reactions

Aminoacids can catalyse their own formation with chirality amplification and undergo physical enantioenrichment processes

Condensation of aminoacids into peptides plausible under prebiotic conditions using condensing agents

Simple peptides can exhibit broad structural variety, catalytically active enzymes can be constructed with reduced aminoacid alphabet