Encapsulation — essential for life
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Membrane compartments



Assembly of amphiphilic monomers into protocellular compartments

Credit: Janet Iwasa

A three-dimensional view of a model protocell (a primitive cell) approximately 100 nanometers in diameter.

The protocell's fatty acid membrane allows nutrients and DNA building blocks to enter the cell and participate
in non-enzymatic copying of the cell's DNA. The newly formed strands of DNA remain in the protocell



Encapsulation — essential for life

Fatty acids have been found in meteorites — plausible prebiotic synthesis
pathways existed in the early Solar System

Meteorite extracts
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Extracts of meteorites containing these compounds spontaneously form
vescicles when hydrated



pH-dependent phase behavior of fatty acids in water
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Growth and division of vesicles
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The growth of large multilamellar fatty acid vesicles fed with
fatty acid micelles:
when solute permeation across the membranes is slow, the
transient imbalance between surface area and volume growth
causes formation of long thread-like vesicles. Modest shear
forces are then sufficient to divide them into multiple daughter
vesicles without loss of internal contents.

Ting F. Zhu, and Jack W. Szostak J. Am. Chem. Soc., 2009, 131 (15), 5705-5713




Relative surface area

Coupled growth and division of model protocell membranes
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Cycles of vesicle growth and division. (A) Relative surface area after two cycles of addition of 5 equiv of oleate micelles (solid circles) or 5 equiv

of NaOH (open circles) to oleate vesicles, each followed by agitation. Inset micrographs show vesicle shapes at indicated times. Scale bar, 10 um. (B)
Vesicle shapes during cycles of growth and division in a model prebiotic buffer (0.2 M Na-glycine, pH 8.5, ~1 mM initial oleic acid, vesicles contain 10
mM HPTS for fluorescence imaging). Scale bar, 20 ym.

Ting F. Zhu, and Jack W. Szostak J. Am. Chem. Soc., 2009, 131 (15), 5705-5713



Scheme of the membrane evolution
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RNA Catalysis in Model Protocell Vesicles
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A mixture of myristoleic acid and its glycerol monoester forms
vesicles that were Mg?*-tolerant. Mg?* cations can permeate
the membrane and equilibrate within a few minutes.

In vesicles encapsulating a hammerhead ribozyme, the
addition of external Mg?* led to the activation and self-
cleavage of the ribozyme molecules. These vesicles can grow
upon addition of micelles. It demonstrates that membranes
made from simple amphiphiles can form vesicles that are
stable enough to retain encapsulated RNAs in the presence of
divalent cations.
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Fluorescence microscopy of 2:1:0.3
MA:GMM:dodecane vesicles
containing hammerhead ribozyme
in the presence of 3 mM MgCl,,

[. A. Chen, K. Salehi-Ashtiani, and J. W. Szostak J. Am. Chem. Soc., 2009, 127, 13213-13219
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Self-reproduction of giant vesicles
combined with the amplification of DNA

a, Amplification of DNA within a GV. An aqueous
dispersion of GVs containing PCR reagents was prepared
using a film-swelling method with a buffered

solution containing template DNA, primers, fluorescent tag
SYBR Green |, deoxynucleoside triphosphates, DNA
polymerase and Mg?+.

b, Vesicular self-reproduction induced by adding
membrane precursor V.. Addition of V- produces
membrane molecules and electrolytes through hydrolysis
assisted by an amphiphilic catalyst. Adhesion of the
amplified DNA to the inner leaflet accelerates vesicular
growth and division.

¢, Chemical structures of membrane molecule V,
amphiphile catalyst C and membrane precursor V-.

K. Kurihara et al., Nat. Chem., 2011, 3, 775-781



before PCR  after PCR Self-reproduction of giant vesicles

A © combined with the amplification of DNA
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Real-time observation of morphological changes of
DNA-amplified GVs after addition of V* .
Original GVs began to grow and divide 4 min after
adding V*. Complete division into four GVs occurred
at 5.5 min, and separation occurred at 7 min.

Scale bars, 10 um. K. Kurihara et al., Nat. Chem., 2011, 3, 775-781




K. Kurihara et al., Nat. Chem., 2011, 3, 775-781
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Noncovalent nucleotide association with membranes
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Neha P. Kamat, Sylvia Tobe, lan T. Hill, and Jack W. Szostak Angew. Chem. Int. Ed. 2015, 54, 11735 —-11739



Noncovalent nucleotide association with membranes
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Noncovalent nucleotide association with membranes
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The great optimism of the 1950's
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Life obeys the laws of chemistry and physics
Characteristics:

Life Is Organized

Life Is Chemically Distinct from Its Environment
Life Is Homeostatic

Life Takes Energy and Matter from the Environment and Transforms Them
Life Responds to Stimuli from the Environment

Life Reproduces

Life Is Adapted to Its Environment




Lightning in early
Earth's atmosphere
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Oparin-Haldane Hypothesis

Oparin (1924) and Haldane (1929) independently hypothesized
a scenario for the building of the chemical building blocks of
life. Oparin in 1936 discussed further steps that would lead to
an origin of life from non-living material, which is popularly
called "abiogenesis". The illustration at left summarizes the
steps of what has been called the Oparin-Haldane Hypothesis
for abiogenesis.



We might need a little more detail on those last steps

h Spontanaoaus . . .
o The Oparin-Haldane Hypothesis suggests the action of natural
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Systems chemistry: bottom-up approach = to build life by self-assembly of biomolecules and biopolymers

Synthetic biology: top-down approach = to simplify currently living organisms and find the lowest limits of , living”



The Minimal Genome Project

Mycoplasma genitalium Mycoplasma laboratorium

Mycoplasma laboratorium is a designed, partially synthetic species of bacterium derived from the genome of Mycoplasma
genitalium. This effort in synthetic biology is being undertaken at the J. Craig Venter Institute by a team of approximately 20
scientists headed by Nobel laureate Hamilton Smith, and including DNA researcher Craig Venter and microbiologist Clyde A.
Hutchison lll. Mycoplasma genitalium was chosen as it was the species with the smallest number of genes known at that
time: the genome consists of 482 genes comprising 582,970 base pairs, arranged on one circular chromosome (the smallest
genome of any known natural organism that can be grown in free culture). The researchers systematically removed genes to
find a minimal set of 382 genes that can sustain life — the synthetic organism Mycoplasma laboratorium.



The Minimal Genome Project
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The Minimal Genome Project

The resulting Mycoplasma laboratorium bacterium is expected to be
able to replicate itself with its man-made DNA, making it the most
p e — synthetic organism to date, although the molecular machinery and
‘\ e Trea ooy ) chemical environment that would allow it to replicate would not be
L »’( synthetic. Craig Venter hopes to eventually synthesize bacteria to
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Creation of a Bacterial Cell Controlled
by a Chemically Synthesized Genome
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Whole

Genome
Synthesis

Complete Chemical Synthesis, Assembly,
and Cloning of a Mycoplasma
genitalium Genome

Daniel G. Gibson, Gwynedd A. Benders, Cynthia Andrews-Pfannkoch, Evgeniya A. Denisova,
Holly Baden-Tillson, Jayshree Zaveri, Timothy B. Stockwell, Anushka Brownley, David W. Thomas,
Mikkel A. Algire, Chuck Merryman, Lei Young, Vadimir N. Noskov, John |. Glass, ]. Craig Venter,

Clyde A. Hutchison Ill, Hamilton O. Smith*
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Fig. 1. Linear G ch (Invitrogen) rep ion of the drcular 582,970-bp
M. genitatium JCVI-LO genome. Features shown include locations of watermarks
and the aminoglycoside resistance marker, viable Tn4001 transposon insertions
determined in our 1999 and 2006 studies (3, 4), overlapping synthetic DNA
cassettes that comprise the whole genome sequence, 485 M genitalium protein-

coding genes, 43 M. genitalium rRNA, tRNA, and structural RNA genes, and B-
series assemblies (Fig. 2). The red dagger on the genome coordinates line shows
the location of the yeastE. coli shuttle vector insertion. Table S1 lists cassette
coordinates; table 52 has FASTA files for all 101 cassettes; table S3 lists watermark
coordinates; table 54 lists the sequences of the watermariks.
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Fig. 3. Assembly of cassettes by in vitro recombination. (A) Diagram of steps in the in wvitro
recombination reaction, using the assembly of cassettes 66 to 69 as an example. (B) BAC vector is
prepared for the assembly reaction by PCR amplification using primers as illustrated. The linear
amplification product, after gel purification, is included in the assembly reaction of (A), such that the
desired assembly is circular DNA containing the four cassettes and the BAC DNA as depicted in (C).



Synthia
Synthia- "the first species.... to have its parents be a computer"

DNA

M. idi M. icol
mycoides capricolum ——

Transfer of whole
gen ome

The transfer
was successful

2z~ "' C:‘ Qwﬂ'

The altered cell
begins to make the
proteins of M. mycoides

On May 21, 2010, Science reported that the Venter group had successfully synthesized the genome of the bacterium
Mycoplasma mycoides from a computer record, and transplanted the synthesized genome into the existing cell of a
Mycoplasma capricolum bacterium that had had its DNA removed. The "synthetic" bacterium was viable, i.e. capable of
replicating billions of times. (The team had originally planned to use the M. genitalium bacterium they had previously been
working with, but switched to M. mycoides because the latter bacterium grows much faster, which translated into quicker
experiments.) —JCVI-synl1.0



Synthia

In 2016, the Venter Institute used genes from JCVI-syn1.0 to

synthesize an even smaller genome they call JCVI-syn3.0, that Memrbrzne Cytosolic
contains 531,560 base pairs and 473 genes. structure & metabolism
function

Originally in 1996, after comparing M. genitalium with Preservation

another small bacterium Haemophilus influenza, Arcady Syn-3.0 of genome
Mushegian and Eugene Koonin had proposed that there 473 genes
might be a common set of 256 genes which could be a
minimal set of genes needed for viability. In this new _

. Genome Jnknown
organism, the number of genes can only be pared down to expressian ‘un-tion

473, 149 of which whose functions are completely unknown

Clyde A. Hutchison I111,*,t, Ray-Yuan Chuangl,t,%, Vladimir N. Noskov1, Nacyra Assad-Garcial, Thomas J. Deerinck2, Mark H. Ellisman2, John
Gill3, Krishna Kannan3, Bogumil J. Karas1, Li Mal, James F. Pelletier4,§, Zhi-Qing Qi3, R. Alexander Richterl, Elizabeth A. Strychalski4, Lijie
Sunl, ||, Yo Suzukil, Billyana Tsvetanova3, Kim S. Wisel, Hamilton O. Smith1,3, John I. Glass1, Chuck Merryman1, Daniel G. Gibson1,3, J.

Craig Venter
Science 2016, 351 (6280), aad6253, p. 1414
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Synthia

JCVI-synl.0
1,078,809 bp

(A) The cycle for genome design, building by means
of synthesis and cloning in yeast, and testing for
viability by means of genome transplantation. After
each cycle, gene essentiality is reevaluated by global
transposon mutagenesis.

(B) Comparison of JCVI-syn1.0 (outer blue circle) with
JCVI-syn3.0 (inner red circle), showing the division of
each into eight segments. The red bars inside the
outer circle indicate regions that are retained in JCVI-
syn3.0.

(C) A cluster of JCVI-syn3.0 cells, showing spherical
structures of varying sizes (scale bar, 200 nm).

Clyde A. Hutchison lll et al., Science 2016, 351 (6280), aad6253, p. 1414
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Overlapping oligonucleotides (oligos) were designed,
chemically synthesized, and assembled into 1.4-kbp
fragments (red). After error correction and PCR
amplification, five fragments were assembled into 7-kbp
cassettes (blue). Cassettes were sequence-verified and
then assembled in yeast to generate one-eighth
molecules (green). The eight molecules were amplified
by RCA and then assembled in yeast to generate the
complete genome (orange).

Clyde A. Hutchison lll et al., Science 2016, 351 (6280), aad6253, p. 1414
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td=63 min
(R2=0.9998)

Synthia

syn3.0
td=178 min

(R2=0.9888)

(A) Cells derived from 0.2 um-filtered liquid cultures were
diluted and plated on agar medium to compare colony
size and morphology after 96 hours (scale bars, 1.0 mm).

(B) Growth rates in liquid static culture were determined
using a fluorescent measure (relative fluorescent units,
RFU) of double-stranded DNA accumulation over time
(minutes) to calculate doubling times (td). Coefficients of
determination (R?) are shown.

(C) Native cell morphology in liquid culture was imaged in
wet mount preparations by means of differential
interference contrast microscopy (scale bars, 10 um).
Arrowheads indicate assorted forms of segmented
filaments (white) or large vesicles (black).

(D) Scanning electron microscopy of syn1.0 and syn3.0
(scale bars, 1 um). The picture on the right shows a variety
of the structures observed in syn3.0 cultures.

Clyde A. Hutchison lll et al., Science 2016, 351 (6280), aad6253, p. 1414



Synthetic biology of E. coli

George Church (Harvard, MIT) - His team is the first to tackle a genome-scale change in
the genetic code. This was done in a 4.7 million basepair genome of an industrially useful
microbe (E. coli) with the goal of making a safer and more productive strain; this strain
uses non-proteinogenic amino acids in proteins and is metabolically and genetically
isolated from other species.
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Strategy for reassigning all 314 TAG codons
to TAA in E. coli.

First, the genome was split into 32 regions
each containing 10 TAG stop codons. In
parallel, MAGE (multiplex automated
genome engineering) was used to execute
all 10 TAG::TAA codon modifications in a
single strain for each genomic region. These
partially recoded strains were paired such
that a targeted genomic region of one strain
(donor) was strategically transferred into a
second strain (recipient), permitting the
hierarchical consolidation of modified
genomic regions using CAGE. Once all TAG
codons have been converted to TAA, the
prfA gene will be deleted to inactivate TAG
translational termination.

Precise manipulation of chromosomes in vivo enables genome-wide codon replacement
Farren J. Isaacs, Peter A. Carr, Harris H. Wang,...JM Jacobson, GM Church - Science, 2011, 333 (6040), 348-353



Challenges in writing genomes

Key challenges and milestones for synthetic genomes

ESTIMATED
KEY TECHNOLOGY DEVELOPMENT TARGET EXAMPLE OF DESIRED MILESTONES TIME (YEARS)
Genome design Genome editing
Develop tools for genome-scale design, Design a virus-proof mammalian chromosome. 3 Expand multiplexity and precision of DNA editing. Simultaneously edit 1000 different targets in 2
VISU3|lZatI0n and quahty control a single bacterial, mammalian, or plant cell with
Integrate structural mformatlon (2D and 3D) Predict the conformation of a synthetic 5 1 off-target hlt per 10'000 genomes. |
into genome desion cnﬂumrn uaact r-hrnmncnmn lanranan affinianm: Af hamalacnie_dicantad ranais Darfaren LMD _mmadiatad adibing in nandiuiding 2
nw 55 UG UCJla QuUilLwaic J‘;UJ‘- vinviinsowi inciease eniCiei l\-y Ul IIUIIIUIUEUUD UIIE\-LCUICPGII remnmu Ill ruwn- IIICUIGISU B\.III.II U4 i IIUII\.IIVIUII U J
Develop sequence to phenotype whole ceII Optrmrze metabolrc profrte accurate to 10 (HDR)—medlated edrtlngln dosrotiog Ilanandplant _cet_lst.___‘.mamma - Ilsat >90% eﬁrcrency
modeling. within twofold, for 100 key gene products Develop editing enzymes for precise substitution Perform aIIeIe edltlng of human cells at srtes 5
of a synthetic virus-proof chromosome. of any nucleotide at any desired genomic locus, lacking PAM sequence, with >95% efficiency.
DNA synthesis with increased efficiency.
Increase coupling efficiency for oligonucleotide Synthesize high-fidelity oligonucleotides longer 3 Chromosome construction
syntheszs than 500 nucleotldes - - - —
: ~eee Dpvelop methods for temporal and spatial control Engineer segregating, stable human artificial 2
Increase eﬁucuency of in wtro DNA assembly for frag- Assemble 20 kb with >50% yleld 4 of smgle chromosomes such as chromatrn state chromosomes (HAC)
Develop methods for synthesls of dificult Synthesize a centromere. 5  efficiency for DNA assembly, particularly for methods in the host Streptomyces coelicolor
sequences, including homopolymers, high-GC drtflcult to assembie sequences. (72% GC content)
content and secondary structure : i
Devetop etflcrent inexpensive methodsfor routlne and Demonstrate routlne dewce based chromosome 3
D9V9|0P e"Z)(""at"? methods for direct synthesns Synthesrze a10-kb fragment (without 7 automated delivery of entire chromosomes into cells.  delivery in mammalian cells by cell fusion.
Develop methodsfor assembly and testing of Assemble a synthetic recoded human 10
Decrease cost of DNA synthesrs by 1000 fold Synthesrze and assemble DNA for one haplord 10 Mb-size chromosomes.

human genome (i.e., 3.2 x 10° bases) for $1000.

Nili Ostrov et al., Science 2019, 366 (6463), p. 310-312

chromosome 21 from DNA fragments.



