

When life originated on Earth?

Hadean Eon (4600 Ma - 4000 Ma) • 4600 Ma – Earth formation

4500 Ma – Theia collides Earth → Moon

- Calçada
- Earth's axis of rotation stabilized, which allowed abiogenesis
 4460 Ma oldest known lunar rock Lunar sample 67215, Apollo 15
- 4404 Ma the oldest known material of terrestrial origin zircon mineral (Australia) isotopic composition of oxygen suggests presence of water on the Earth's surface
- 4374 Ma the oldest consistently dated zircon

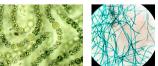
Archean Eon (4000 Ma - 2500 Ma)

- 4031 Ma formation of the Acastia Gneiss

 the oldest known intact crustal fragment on Earth
- 4100 Ma 3800 Ma Late Heavy Bombardment (LHB)
- 3800 Ma greenstone belt (Greenland) isotope frequency consistent with presence of life

1 Ma = 1 million years

When life originated on Earth?


- 4100 Ma "remains of biotic life" found in zirconites (Australia)
- 3900 Ma 2500 Ma cells remaining procaryotes appear first chemoautotrophes: oxidize inorganic material to get energy, CO₂ – carbon source
- 3700 Ma oldest evidences for life biogenic graphite in Isua greenstone belt (Greenland)
- c.a. 3500 Ma lifetime of the Last Universal Common Ancestor (LUCA)
- split between bacteria and archaea
- 3480 Ma oldest fossils microbial mat (bacteria and archaea) fossils sandstone, Australia
- 3000 Ma photosynthesizing cyanobacteria evolved water used as reducing agent → production of oxygen → oxidation of iron into iron ore (FeO_x) (banded iron)
- 2500 Ma free oxygen in atmosphere → Great Oxygenation Event ("Oxygen catastrophe") extinction of most anaerobic organisms

cvanobacter

Archaea (Halobacteria)

extremophiles

The origin of life on Earth

- 384-322 BC Aristotle *abiogenesis*: spontaneous generation of life forms from unanimated matter (flies from old meat, mice from dirty hay)
- 1665 AC Robert Hooke (microscope) discovery of bacteria considered a proof for spontaneous generation (bacteria division was not observed by then)
- 1668 Francisco Redi *biogenesis*: every life comes from another life
- 1861 Louis Pasteur bacteria do not grow in sterilized nutrient-rich medium, unless inoculated from outside; abiogenesis under current conditions regarded as impossible and therefore disproven

Panspermia – idea that life came to Earth from elsewhere in the Universe (e.g. Extremophilic organisms hibernated and traveling inside meteorites) – Anaxagoras (400ts BC), Berzelius, Kelvin, von Helmholtz, Arrhenius...;

Pseudo-panspermia – biorelevant molecules delivered from outside of Earth (meteorites)

Alexander Oparin (USSR, 1894-1980)

"atmospheric oxygen prevents the synthesis of certain organic compounds that are necessary building blocks for the evolution of life"

The early Earth had a chemically reducing atmosphere.
 This atmosphere, exposed to energy in various forms, produced simple organic compounds ("monomers").
 These compounds accumulated in a "soup" that may have concentrated at various locations (shorelines, oceanic vents etc.).
 By further transformation, more complex organic polymers - and ultimately life -

developed in the soup.

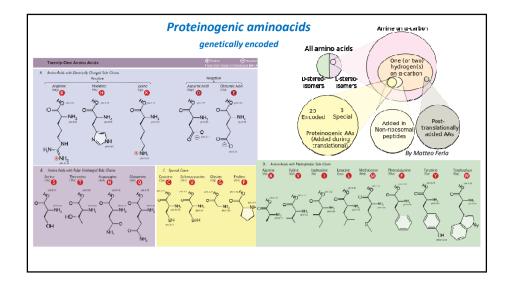
"Primordial soup"

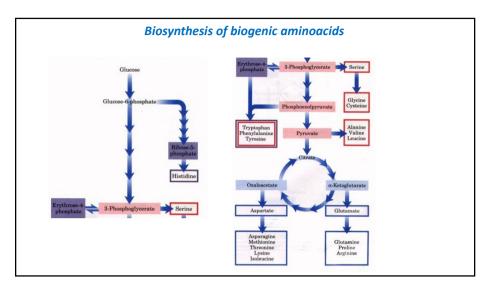
"Biopoeiesis" – prebiotic oceans as "hot diluted soup" under anoxic conditions: e.g. CO₂, NH₃, H₂O

"Life arose through the slow evolution of chemical systems of increasing complexity"

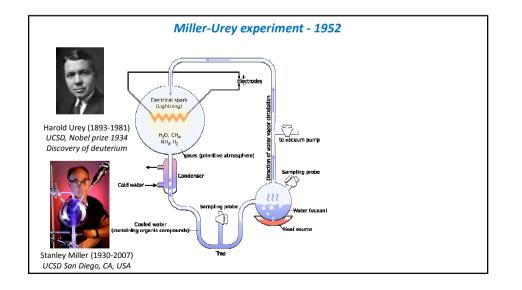
Basic classes of biomolecules

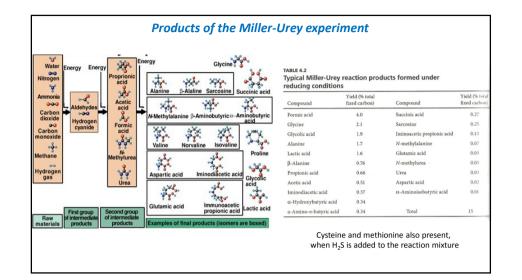
- Aminoacids
- Lipids
- Carbohydrates (sugars)
- Nucleotides
- Nucleosides (sugar+nucleotide)

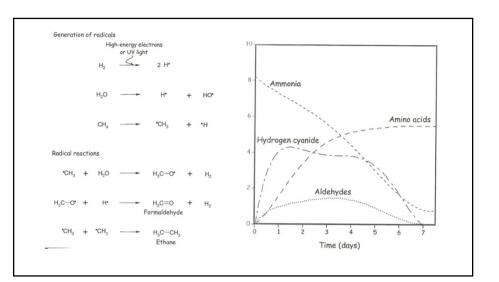

Vital chemical reactions

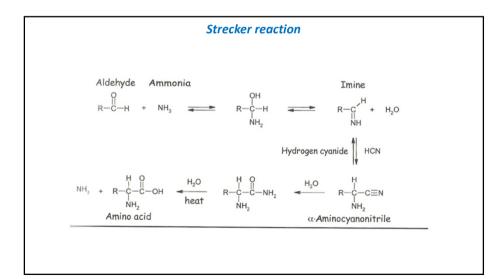

Aminoacid polymerization \rightarrow ribosome nucleotide polymerization \rightarrow DNA/RNA polymerases

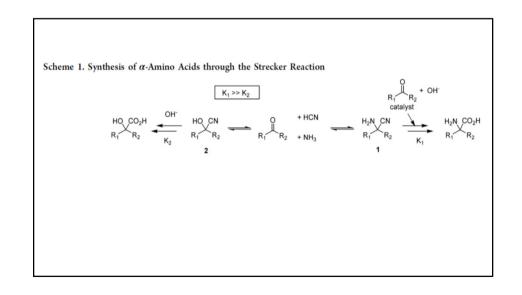
Experimental prebiotic organic chemistry


- Prebiotic chemistry deals with reactive substances (like HCN) often at concentrations much higher than probable in prebiotic environments
- Prebiotic experiments usually performed with very small number of pure substrates
- Early protometabolic processes might have used a broader set of organic compounds than the one contemporary biochemistry
 - No evidences/fossils from that early Earth → we try to SPECULATIVELY fit different examples of chemical reactivity into an EXPECTED OUTCOME which we know as contemporary biochemistry


 Most of the discussed transformations are performed by highly specific and evolved enzymes at high speed and efficiency – prebiotic chemistry is supposed to be much slower and less efficient, but more robust and diverse

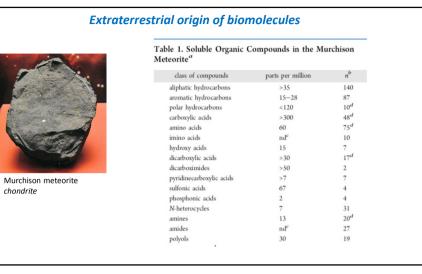


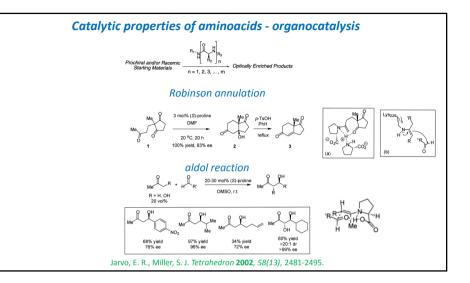


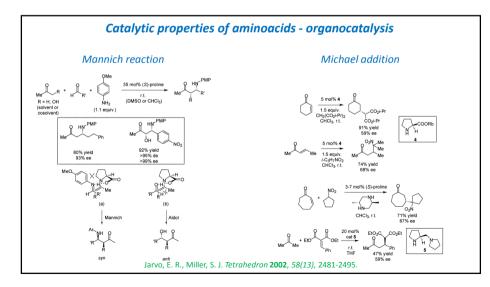

Atmosphere of	composition fo	or vouna terre	strial planets		
· · · · · · · · · · · · · · · · · · ·					
	Reduced	Neutral	Oxic		
Carbon (C)	CH ₄	CO, CO ₂	CO ₂		
Nitrogen (N)	NH ₃	N ₂	N ₂		
Oxygen (O)	H ₂ O	H ₂ O, CO, CO ₂	0 ₂		
Hydrogen (H)	H ₂ , CH ₄ , NH ₃ , H ₂ O	H ₂ O	H ₂ O		

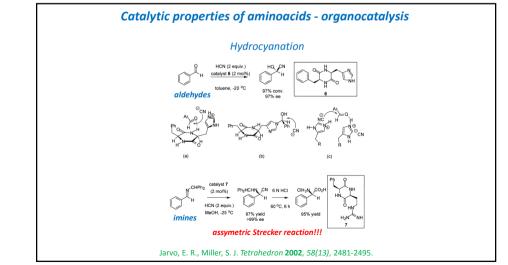
rgy Energy Glycine	TABLE 4.3 Yields of the α-amir Miller-Urey experim		the	
Actic detrydes actic Actic	Amino acid	Yield (µM)	Amino Acid	Yield (µM)
cyanide Formic acid	Glycine	440	Norleucine	6
valine Norvaline Isovaline	Alanine	790	Isoleucine	5
Methylurea	Proline α-Aminobutyric acid	270	Serine	5
Aspartic acid Iminodiacetic acid	Glycolic Norvaline	61	Alloisoleucine	5
Urea	acid Aspartate	34	Isovaline	5
econd group	actic acid α-Aminoisobutyric acid	30	Proline	2
Examples of final products (isomers a	boxed) Valine	20	Threonine	1
	Leucine	11	Allothreonine	1
	Glutamate	8	Tert-Leucine	0.02

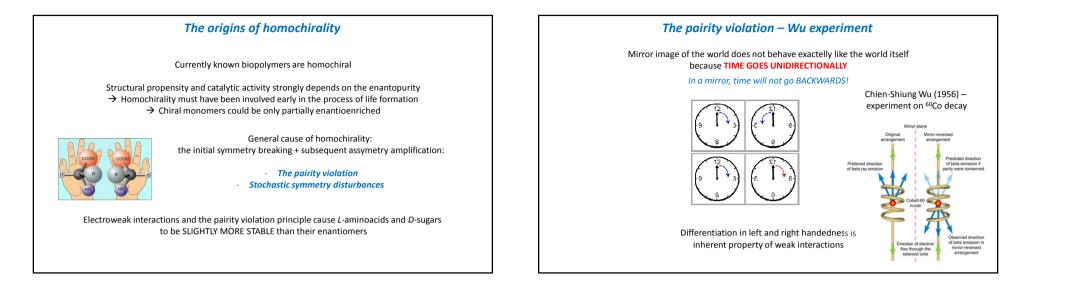
	l.	(1 -	1	Tara
Researcher(s)	Year		Energy source	Results	Probability
Miller	1953	CH_4 , NH_3 , H_2O , H_2	Electric discharge	Simple amino acids,	unlikely
Abelson	1050	CO CO N NUL U	Electric d'autores	organic compounds	
Abelson	1950	CO, CO ₂ , N ₂ , NH ₃ , H ₂ ,	Electric discharge	Simple amino acids,	unlikely
		H2O		HCN	
Groth and Weyssenhoff	1957	CH ₄ , NH ₃ , H ₂ O	Ultraviolet light	Simple amino acids (low	under special conditions
			(1470-1294?)	yields)	
Bahadur, et al.	1958	Formaldehyde,	Sunlight	Simple amino acids	possible
		molybdenum oxide	(photosynthesis)		
Pavolvskaya and	1959	Formaldehyde, nitrates	High pressure Hg lamp	Simple amino acids	possible
Pasynskii			(photolysis)		
Palm and Calvin	1962	CH ₄ , NH ₃ , H ₂ O	Electron irradiation	Glycine, alanine, aspartic	under special conditions
				acid	
Harada and Fox	1964	CH ₄ , NH ₃ , H ₂ O	Thermal energy	14 of the "essential"	under special conditions
			(900-1200° C)	amino acids of proteins	
Oró	1968	CH ₄ , NH ₃ , H ₂ O	Plasma jet	Simple amino acids	unlikely
Bar-Nun et al.	1970	CH ₄ , NH ₃ , H ₂ O	Shock wave	Simple amino acids	under special conditions
Sagan and Khare	1971	CH4, C2H6, NH3, H2O,	Ultraviolet light (>2000	Simple amino acids (low	under special conditions
		H2S	2)	vields)	

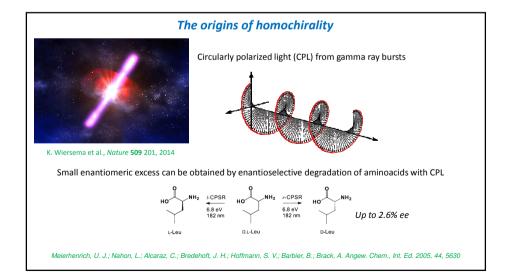

oshino et al.	1071	H ₂ , CO, NH ₃ ,	Temperature of 700°C	Glycine, alanine,	unlikely
roshino et al.	19/1	montmorillonite	Temperature of 700 C	glutamic acid, serine, aspartic acid, leucine, lysine, arginine	unikely
Lawless and Boynton	1973	СН ₄ , NH ₃ , H ₂ O	Thermal energy	Glycine, alanine, aspartic acid, ?-alanine, N-methyl-?-alanine, ?-amino-n-butyric acid.	under special conditions
Yanagawa et al.	1980	Various sugars, hydroxylamine, inorganic salts,	Temperature of 105°C	Glycine, alanine, serine, aspartic acid, glutamic acid	under special conditions
Kobayashi et al.	1992	CO, N ₂ , H ₂ O	Proton irradiation	Glycine, alanine, aspartic acid, ?-alanine, glutamic acid, threonine, ?-aminobutyric acid, serine	possible
Hanic, et al.	1998	CO2, N2 H2O	Electric discharge	Several amino acids	possible

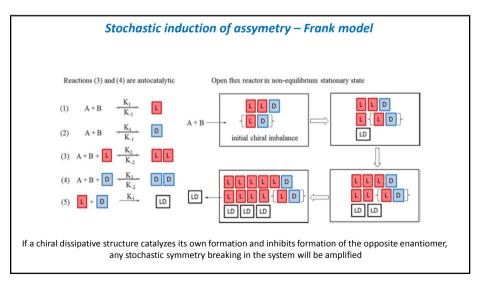

Aminoacid production under hydrothermal conditions

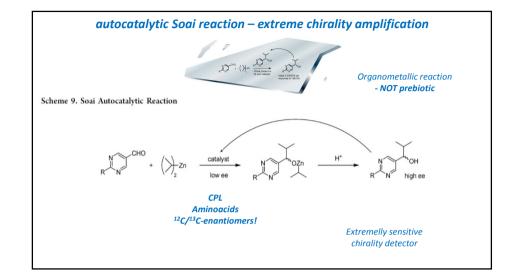

Ni(OH)₂/KCN/CO in alkaline aqueous conditions (80-120^oC) $\rightarrow \alpha$ -amino and α -hydroxyacids Huber, C.; Wächtershäuser, G. *Science* **2006**, *314*, 630–632

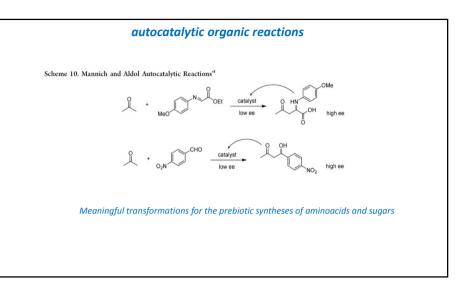

Ca(OH)₂/NiSO₄/KCN/CO in alkaline (pH 9.1-12.9) aqueous conditions (145-280⁰C) → α -amino and α -hydroxyacids (higher yields): glycine, alanine, serine, glycolate, lactate, glycerate


Huber, C.; Eisenreich, H.; Wächtershäuser, G. Tetrahedron Lett. 2010, 51, 1069-1071

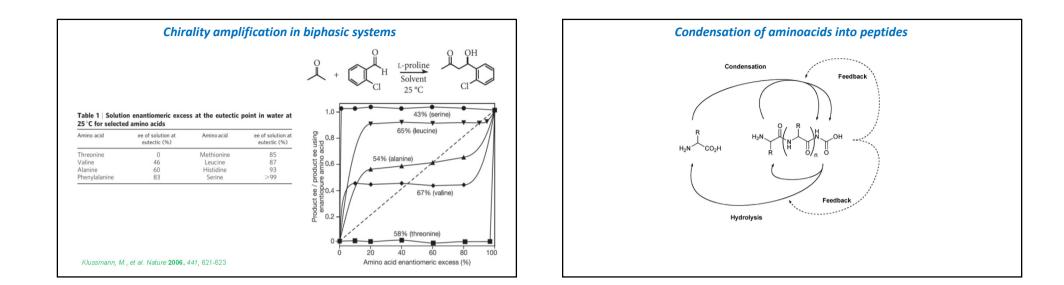


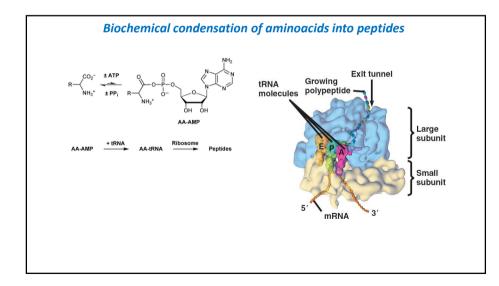


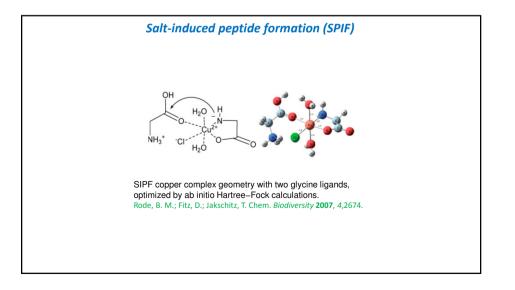




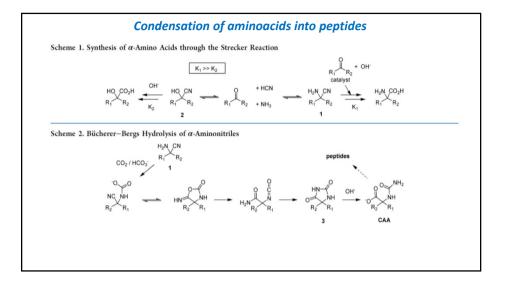
0

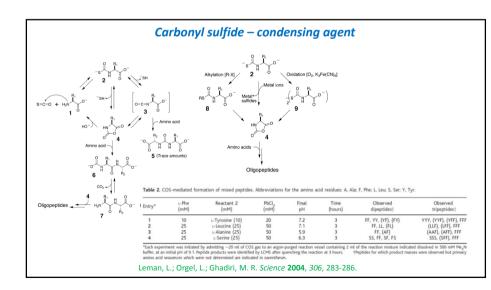


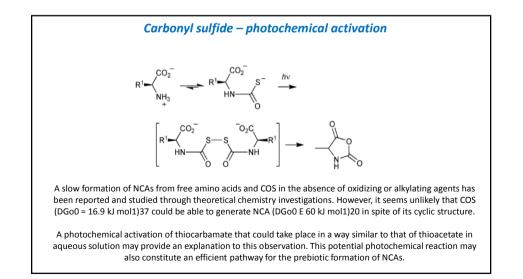


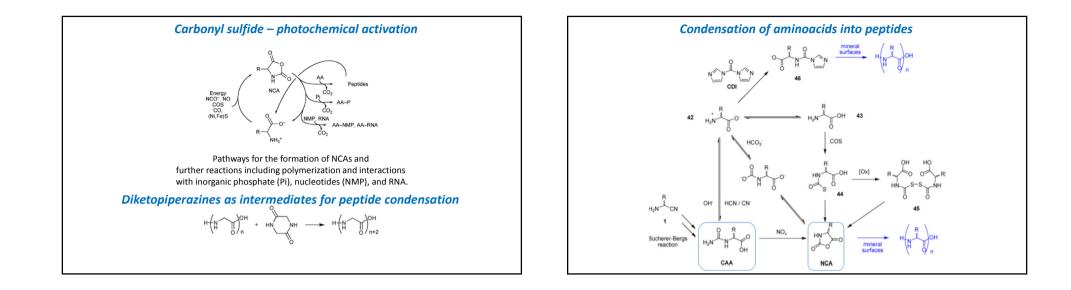

Organocatalys	is – the origi	n of hom
Table 1. Enantiomeric phenylalanine after tv		
Component	Initial ee, %	Final ee, %
D	10	90.0 ± 3.7
	5	91.7 ± 1.5
	1	87.2 ± 2.0
L	10	88.3 ± 1.1
	5	88.6 ± 0.9
	1	90.9 ± 0.3

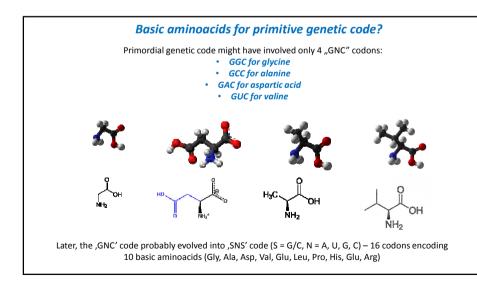
 \mathbf{a}

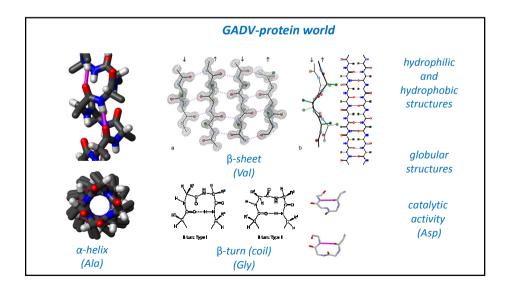

Prebiotic	ally relevant	t <mark>peptide c</mark>	ondensation	agents


Activating Hydrolysie/

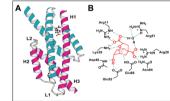

ACOL


Entry	agent	hydration product	$kJ \text{ mol}^{-1}$
1	NH ₂ CONH ₂	$CO_2 + NH_3$	-16^{a}
2	COS (g)	$CO_2 + H_2S$	-17^{a}
3	Pyrophosphate	Phosphate	-19^{b}
4	CO (g)	HCO ₂ H	-16^{a}
5	HNCO	$CO_2 + NH_3$	-54^{a}
6	HCN	$HCO_2H + NH_3$	-75^{a}
7	RCN	$RCO_2H + NH_3$	-80^{c}
8	NH ₂ CN	Isourea	-83^{d}
9	HNCNH	Isourea	-97^{d}
10	HCCH (g)	CH ₃ CHO	-112^{a}


Danger, G.; Plasson, R.; Pascal, R. Chem. Soc. Rev. 2012, 41, 5416.



ct functional enzymes Prebiotic generation plausible – variants of the Miller-Urey experiment s, Leu, Met, Arg Aminoacids are good catalysts, can perform various chemical transformations regerie and ginhibitor bound at its active sites; the two truns between residues in the evolved active site of the on the x-ray structure of ECCM. Residues Gin⁸⁸ and Se⁴⁴ Aminoacids can catalyse their own formation with chirality amplification and undergo physical enantioenrichment processes a state analog inhibitor bound at its active sites; the two truns between residues in the evolved active site of the on the x-ray structure of ECCM. Residues Gin⁸⁸ and Se⁴⁴ Condensation of aminoacids into peptides plausible under prebiotic conditions using condensing agents Simple peptides can exhibit broad structural variety, catalytically active enzymes can be constructed with reduced aminoacid alphabet


brgy

Aminoacids - Summary

Reduced aminoacid alphabet

9-aminoacid alphabet is sufficient to construct functional enzymes

Aminoacids: Asp, Glu, Asn, Lys, Phe, Ile, Leu, Met, Arg

AroQ structure and active site. A, the homodimeric EcCM is shown with a transition state analog inhibitor bound at its active sites; the two identical polypeptide chains are colored *blue* and *pink* for clarity. B, proposed interactions between residues in the evolved active site of the simplified enzyme and the transition state analog inhibitor, compound 1 (*red*), based on the x-ray structure of EcCM. Residues Gln⁸⁸ and Ser⁸⁴ in EcCM are substituted with Glu⁸⁸ and Asn⁸⁴ in the 9-amino acid enzyme. Residue numbers are referenced to EcCM.

Walter, K. U., Vamvaca, K., Hilvert, D. J. Biol. Chem. 2005, 280,37742-37749.