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ABSTRACT Metabolic challenge protocols, such as the
oral glucose tolerance test, can uncover early alterations
in metabolism preceding chronic diseases. Nevertheless,
most metabolomics data accessible today reflect the fast-
ing state. To analyze the dynamics of the human metabo-
lome in response to environmental stimuli, we submitted
15 young healthy male volunteers to a highly controlled 4
d challenge protocol, including 36 h fasting, oral glucose
and lipid tests, liquid test meals, physical exercise, and
cold stress. Blood, urine, exhaled air, and breath conden-
sate samples were analyzed on up to 56 time points by MS-
and NMR-based methods, yielding 275 metabolic traits
with a focus on lipids and amino acids. Here, we show that
physiological challenges increased interindividual varia-
tion even in phenotypically similar volunteers, revealing
metabotypes not observable in baseline metabolite pro-
files; volunteer-specific metabolite concentrations were
consistently reflected in various biofluids; and readouts
from a systematic model of �-oxidation (e.g., acetylcarni-
tine/palmitylcarnitine ratio) showed significant and stron-
ger associations with physiological parameters (e.g., fat

mass) than absolute metabolite concentrations, indicating
that systematic models may aid in understanding individ-
ual challenge responses. Due to the multitude of analyti-
cal methods, challenges and sample types, our freely
available metabolomics data set provides a unique refer-
ence for future metabolomics studies and for verification
of systems biology models.—Krug, S., Kastenmüller, G.,
Stückler, F., Rist, M. J., Skurk, T., Sailer, M., Raffler, J.,
Römisch-Margl, W., Adamski, J., Prehn, C., Frank, T.,
Engel, K.-H., Hofmann, T., Luy, B., Zimmermann, R.,
Moritz, F., Schmitt-Kopplin, P., Krumsiek, J., Kremer, W.,
Huber, F., Oeh, U., Theis, F. J., Szymczak, W., Hauner,
H., Suhre, K., Daniel, H. The dynamic range of the
human metabolome revealed by challenges. FASEB J. 26,
2607–2619 (2012). www.fasebj.org
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In biofluids or tissues, metabolomics identifies and
quantifies the final entities of the reaction chain along
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the paradigm of biology, from genes to transcripts to
proteins to the metabolic intermediates. In contrast to
the other profiling technologies, such as transcriptom-
ics or proteomics, metabolomics data can be better
interpreted on the basis of biochemical knowledge
gained over almost a century. For diagnostic purposes,
metabolic analysis of body fluids was first established for
inborn errors of metabolism, based on the pioneering
work of A. Garrod, “The Incidence of Alkaptonuria: A
Study in Chemical Individuality,” published in 1902
(1), and is now standard in newborn screenings (2).
More recent developments propose metabolomics as a
biomarker discovery tool for a variety of diseases,
including Crohn’s disease, Parkinson’s disease, or can-
cer (3–5). While markers that associate with a manifest
disease are often readily detected, it is far more difficult
to determine the status of health and define the border
between health and disease. Early alterations in metab-
olism, however, might be unmasked by challenging
metabolic regulatory processes, testing the individual
capacity and flexibility to cope with environmental
stressors, such as physical activity or dietary compo-
nents. However, most metabolomics studies to date are
limited to the analysis of samples obtained in a fasted
state, and only very few studies report time-resolved
changes of the human metabolome in response to a
challenge (6–8). Using a liquid chromatography–tan-
dem mass spectrometry (LC-MS/MS) method with
detection of 191 metabolites in plasma samples derived
during an oral glucose tolerance test (OGTT) in
healthy and prediabetic volunteers, Shaham et al. (6)
identified metabolites with significant changes not pre-
viously described in the context of glucose homeostasis,
such as bile acids or urea cycle intermediates. Rubio et
al. (8) revealed numerous new fasting markers by
analyzing metabolite profiles of plasma and urine sam-
pled during extended fasting in human volunteers with
multivariate statistics. Wopereis et al. (7) analyzed
metabolome changes during an OGTT in overweight
human volunteers during a 9-wk intervention with a
mild acting anti-inflammatory drug and demonstrated
that the OGTT increased the statistical power for
detecting differences by treatment.

To extend the knowledge on the dynamics of the
human metabolome in response to diverse challenges,
we performed a study in which 15 healthy male volun-
teers underwent 6 different challenges over 4 d of
study: a prolonged fasting period of 36 h (fasting), a
standard liquid diet (SLD), an OGTT, an oral lipid
tolerance test (OLTT), a physical activity test (PAT),
and a cold pressure stress test (stress). Within this study,
a variety of sample types [blood, urine, exhaled breath,
and exhaled breath condensate (EBC)] were collected
with high temporal resolution (on up to 56 time
points) and analyzed with NMR and different mass
spectrometric techniques, mainly focusing on lipids
and amino acids. The present work aims to describe the
challenges and metabolic analysis protocols and to
present examples of our data according to the 3
directions of our human metabolome study: the analyt-

ical depth (different methods), the breadth of the
physiological challenges (different metabolic condi-
tions) and the width of the sample coverage (different
biofluids and high sampling frequency). In addition,
we show an application of metabolome data for systems
biology. To our knowledge, no other study has yet
characterized the dynamics of human metabolome in a
more detailed manner. This study, with �2100 individ-
ual samples, provides a valuable data set of the metabo-
lome under various physiological conditions, measured
on different analytical platforms and in different bio-
fluids. The metabolomics data obtained within this study
are freely and permanently available online [Human
Metabolome Study (HuMet); http://metabolomics.
helmholtz-muenchen.de/humet].

MATERIALS AND METHODS

Subjects

Volunteers were recruited into the human study center of the
Else Kröner-Fresenius Center for Nutritional Medicine
(Technische Universität München, Munich, Germany). After
medical examination, 15 healthy, young and normal weight
men were included into the study. They showed no metabolic
abnormalities based on standard clinical chemistry, did not
take any medication, and gave their written informed con-
sent. The study protocol was approved by the ethical commit-
tee of the Technische Universität München (#2087/08) and
corresponds with the Declaration of Helsinki.

Entrance examination

During a medical examination, standard clinical (blood lip-
ids, blood pressure. etc.) and anthropometric parameters,
such as body mass index (BMI), waist-to-hip ratio, etc., were
determined. The resting metabolic rate (RMR) was measured
by indirect calorimetry (Deltatrac metabolic monitor; Datex-
Ohmeda, Helsinki, Finland). Body composition was assessed
by dual energy X-ray absorptiometry using an Explorer bone
densitometer (Hologic Inc., Bedford, MA, USA). Individual
anaerobic threshold was assessed with an incremental bicycle
ergometer test starting at 50 W at the Center for Prevention
and Sports Medicine (Technische Universität München).

Study design

The study design, showing the sequence of challenges, is
displayed in Fig. 1. Volunteers underwent 6 challenges within
2 test periods, each lasting 2 days and 2 nights. In the 24 h
before each test period, subjects were asked not to consume
alcohol or to undertake strenuous physical exercise. To
minimize environmental influences on the metabolome, sub-
jects stayed inside the study unit throughout both study
periods under controlled food and fluid intake and physical
activity. Volunteers were admitted to the study unit on the
evening before each test period to consume a standardized
balanced meal at 7 PM (503 kJ/100 g) with mineral water.
Besides the challenge meals, subjects received a standardized
breakfast at 8 AM (d 2), lunch at 12 PM (d 3), and dinner at
7 PM (d 3), which always consisted of a commercial fiber-free
formula drink (Fresubin Energy Drink, chocolate flavor;
Fresenius Kabi, Bad Homburg, Germany). The energy con-
tent of all defined meals was adjusted to 1/3 of the individual
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RMR multiplied by a factor of 1.3 for low physical activity.
Samples were always taken shortly before each challenge test
(0 min) and then at predefined time points.

Fasting challenge

After the evening meal at 7 PM on d 1, the study participants
fasted until 8 AM the next morning, when the first samples
were obtained, and then continued fasting for another 24 h.
Plasma and breath air samples were collected every 2 h
between 8 AM and midnight and again after a total fasting
period of 36 h. Urine was collected every 4 h between 8 AM
and midnight and again after 36 h of fasting. EBC was
collected every 2 h between 8 AM and 10 PM and again after
a total fasting period of 36 h. During the fasting period,
subjects received 2.7 L of mineral water according to a
predefined drinking schedule.

SLD challenge

To investigate the effects of a complex, balanced diet, subjects
received a highly defined fiber-free formula drink (Fresubin
Energy Drink, chocolate flavor), providing 1/3 of the indi-
vidual daily energy requirements, at noon on d 2 for ingestion
within 5 min. Plasma and exhaled air were collected at 0, 15,
30, 45, 60, 90, 120, 180, and 240 min. EBC was collected at 0,
60, 120, 180, and 240 min. Urine was collected at 0 and 120
min.

OGTT challenge

On d 3, an OGTT was carried out at 8 AM after an overnight
fast by ingesting 75 g of glucose drink (Dextro O.G.T.; Roche
Diagnostics, Mannheim, Germany). All subjects were asked to
drink the 300-ml glucose solution within 3 min. Plasma and
exhaled air samples were collected at 0, 15, 30, 45, 60, 90, 120,
180, and 240 min. EBC was collected at 0, 60, and 120 min.
Urine was collected at 0 and 240 min.

PAT challenge

All subjects performed a 30-min bicycle ergometer training at
a power level corresponding to their individual anaerobic
threshold. Plasma and exhaled air was obtained before the
PAT, during the PAT at 15 and 30 min, and after the PAT at
45, 60, 90, and 120 min. EBC collections were performed at 0,
60 and 120 min. Urine was collected at 0 and 120 min.

OLTT challenge

The lipid-rich liquid test diet consisted of 3 parts Fresubin
Energy Drink and 1 part Calogen (Nutricia, Zoetemeer, The
Netherlands), a fat emulsion containing 50 g of long-chain
triglycerides per 100 ml. The volume of the liquid meal was
calculated for each volunteer to provide 35 g fat/m2 body
surface area. The test drink was served at room temperature
for ingestion within 5 min. Plasma and exhaled air samples
were collected at 0, 30, 60, 90, and 120 min and thereafter
every hour until 8 h after lipid ingestion. EBC was sampled at
8 AM (0 min) and then every hour after the OLTT until 4 PM
(480 min). Urine was collected at 0, 4, and 8 h. The
compositions of all liquid diets are provided in Supplemental
Table S1.

Stress challenge

To elicit a hormonal stress response and examine its effect on
metabolism, volunteers underwent a cold pressure test by
immersing one hand, up to wrist level, with fingers apart, for
maximal 3 min in ice water. Plasma and exhaled air samples
were obtained at 0, 15, 30 45, 60, 90, and 120 min. Urine and
EBC were collected at 0 and 60 min.

Sample collection

Plasma

During the study, a total of 56 blood samples/subject were
collected into 9-ml EDTA K2-Gel tubes (Sarstedt, Nümbrecht,
Germany) through a venous cannula (18-gauge 1¾; Vasofix
Braunüle, Braun, Germany) inserted into an antecubital vein.
Tubes were mixed and centrifuged immediately (5702 R
centrifuge; Eppendorf AG, Hamburg, Germany) at 3000 g for
10 min at 20°C. Obtained plasma was immediately portioned
into aliquots, frozen on dry ice, and subsequently stored at
�80°C until further analysis.

Urine

Spot urine samples were collected into 125-ml polypropylene
beakers (Ratiolab, Dreieich, Germany), immediately por-
tioned into aliquots, frozen on dry ice, and then stored at
�80°C until analysis.

Figure 1. Study design of the HuMet study.
Within 4 d, volunteers underwent the 6 chal-
lenges: fasting, SLD, OGTT, PAT, OLTT, and
stress (cold stress test). Solid bars indicate du-
ration of each challenge test. Symbols indicate
time points of biofluid collection.
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Breath air

The exhaled breath samples were collected into reusable 3-L
polytetrafluoroethylene (Teflon) bags (SKC, Eighty Four, PA,
USA) using the mixed expired sampling technique. Subjects
filled the bag in a single exhalation. Breath gas collection was
scheduled immediately before each blood collection. Room
air was drawn contemporaneously. Breath and room air were
sampled at the test location and analyzed immediately by
proton transfer reaction (PTR)-MS. Before PTR-MS analysis,
the filled bags were heated up in an oven for �5 min at 40°C
in order to evaporate the condensed humidity.

EBC

EBC was sampled using an ECO Screen II condenser (Jaeger
GmbH, Hoechberg, Germany). Therefore, subjects respired
into the device for �10 min to collect 150 l breath volume.
EBC was collected into two cooled (�20°C) disposable poly-
tetrafluoroethylene plastic bags. The exhaled air is fractioned
into bronchial and alveolar breath partitions, each collected
into one of the two cooled bags. Samples were immediately
transferred into 1.5-ml storage tubes, frozen on dry ice, and
stored at �80°C until measurement.

Standard biochemistry parameters

Venous plasma glucose and lactate concentrations were de-
termined by enzymatic amperometric technique (Super GL
easy�; Dr. Müller Geräte Bau, Freital, Germany). Insulin was
measured by enzyme-linked immunosorbent assay (ELISA;
K6219; Dako, Glostrup, Denmark). Nonesterified fatty acids
(NEFAs) were quantified in plasma by an enzymatic colori-
metric method (NEFA-HR; Wako Chemicals GmbH, Neuss,
Germany) according to the manufacturer’s recommenda-
tions.

Metabolomics analyses

Targeted metabolomics

Flow injection analysis (FIA)-MS/MS-based analysis using the
AbsoluteIDQ kit (Biocrates Life Sciences AG, Innsbruck,
Austria) was performed as described previously (9–11) by
using a 4000 QTRAP system (AB Sciex, Darmstadt, Germany).
The metabolomics data set contains 14 amino acids; hexose;
free carnitine (C0); 40 acylcarnitines, hydroxylacylcarnitines,
and dicarboxylacylcarnitines; 15 sphingomyelins; 77 phos-
phatidylcholines; and 15 lysophosphatidylcholines. Data qual-
ity was assessed by repeated measurements of the same
sample (5�) on different days. Metabolites showing a coeffi-
cient of variation (CV) � 25%, as well as metabolites with CV
� 20% and a significant correlation (Kendall) to the run day,
were excluded from further analysis.

NMR metabolomics in plasma

Lipoproteins were analyzed by NMR spectroscopy at LipoFIT
Analytic GmbH (Regensburg, Germany). The technology was
patented (U.S. 7,927,878; Australia 2005250571; Germany 10
2004 026 903 B4). Briefly, diffusion-weighted NMR spectra of
blood plasma were recorded on a Bruker Avance IIplus

600-MHz spectrometer (Bruker Daltonics, Bremen, Ger-
many), which revealed characteristic overall profiles of the
lipoprotein signals. The spectral regions of the spectra rang-
ing from 1.5 to 0.7 ppm were modeled into a set of 15
lipoprotein subfractions. These 15 lipoprotein subfractions

were used to calculate lipoprotein size and quantity (number)
in terms of the concentration (nM) of particle subclasses and
the average particle size (nm).

NMR metabolomics in urine

NMR spectroscopy was carried out at LipoFIT Analytic on a
Bruker Avance IIplus 600-MHz spectrometer. We recorded
1-dimensional 1H-NMR NOESY experiments from the urine
specimen in phosphate buffer at pH 7.4 with 1,1,2,2-tetra-
deutero-3-trimethylsilylpropionic acid (TSP) for reference at
a frequency of 600.30 MHz. Metabolites in these NMR spectra
were annotated using the Chenomx NMR Suite 7.0 (Che-
nomx Inc., Edmonton, AB, Canada; ref. 12). Metabolite
assignment was done manually since varying sample condi-
tions affect the chemical shift of the metabolite resonances.
The signal of a reference compound added to the specimen
(TSP, 0.5 mM) was used to determine absolute metabolite
concentrations. We normalized these concentrations by uri-
nary creatinine levels and report them as millimoles per mole
of creatinine.

Nominal mass PTR-MS metabolomics in breath air

From every breath sample, 5 mass scans in the mass range
between 20 and 200 amu were recorded with a standard PTR
mass spectrometer (Ionicon, Innsbruck, Austria). The re-
corded counts of every mass were normalized to the count
rate of the primaries and water clusters to compensate for
fluctuations in the primary concentrations and for consump-
tion of the primary ions in saturated breath gas compared to
the drier room air. Because of the extraordinary high in-
crease of the acetone count rate during the elongated fasting
period, the acetone count rate was additionally factored into
the normalization. The change of transmission of the PTR
mass spectrometer over time was corrected, and the conver-
sion of the normalized count rate to parts per billion volume
(ppbv) used the standard formula for PTR-MS concentrations
(13). Masses were excluded from comparison if normalized
count rates were below 2 normalized counts/s in 80% of the
data points of a challenge. Due to the unit mass resolution of
the PTR mass spectrometer, the assignment of a mass to a
specific compound is rather tentative. However, in the se-
lected cases, the linear correlation between the isotope count
rates supported the assignment (e.g., acetone).

Flow injection electrospray ionization ion cyclotron resonance
Fourier transform (FIESI-ICR-FT)/MS nontargeted metabolomics

Samples were measured at Helmholtz Zentrum München
using a Bruker Solarix FT-ICR mass spectrometer (Bruker
Daltonics, Bremen, Germany) with a 12-T magnet and an
Apollo II electrospray ionization source. Ionization was per-
formed at positive mode and voltage of 4500 V. Samples were
flow injected at 2 �l/min flow rate. In total, 420 time-domain
transients were acquired and accumulated per sample. Each
Fourier-transformed mass spectrum consists of 2 megaword
data points, resulting in a mass resolving power of 400,000 at
m/z 200 and 200,000 at m/z 400. Prior to analysis, mass
spectra were calibrated with an error of �100 ppb using
arginine clusters. Further calibration and mass spectrum
unification was performed as described previously (14).
Masses were filtered with a signal to noise ratio of 4 and/or
10�6% of maximum intensity. Masses were annotated using
the MassTRIX server (15) at 0.5 ppm accuracy. Unified
spectra were normalized on the sum of signal intensities per
spectrum and then subject-wise on the sum of normalized
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signal intensities, to compensate for different ion strengths in
samples and for interindividual variation, respectively.

Statistical analysis

Principle component analysis (PCA) For unsupervised mul-
tivariate data analysis, we performed PCAs using the prcomp
function as implemented in the R 2.10.1 statistical software
(http://www.r-project.org). The analyses were based on the
quantitative data for all metabolic traits in plasma (132 by
FIA-MS/MS, 28 by NMR, 3 by standard biochemistry). On the
one hand, we determined the principal components of the
mean concentrations of the 15 subjects at the 56 plasma
sampling time points (56�163 data matrix). On the other
hand, we performed a PCA on the complete data matrix for
plasma (840�163). To this end, we first excluded rows
(samples) with �80% missing values (23) and imputed the
remaining missing values according to the following rules:
if missing, the value for the data point qmetab,subject,t is set
to the mean of qmetab,subject,t-1 and qmetab,subject,t�1, whenever
qmetab,subject,t-1 and qmetab,subject,t�1 are nonmissing values.
Otherwise, a missing value for qmetab,subject,t is replaced by the
mean value qmeanmetab,t for the time point t over all subjects.
For the PCAs, each metabolite column of the respective data
matrix was scaled to a mean of 0 and a standard deviation of
1 in order to make the concentrations comparable.

Pearson correlation For 275 metabolites (163 in plasma,
106 in breath air, 6 in urine), we calculated the mean
concentrations of the 15 subjects at the 56 plasma sampling
time points, resulting in a mean time course for each metab-
olite. For metabolites quantified with the AbsoluteIDQ kit,
log-transformed values were used, because most metabolite
concentrations showed a log-normal distribution. Pearson
correlations between metabolite mean time courses were
calculated in order to uncover metabolites with similar or
opposed time curves. The Pearson correlation coefficients
were determined using the cor.test function in R. The matrix
of pairwise Pearson correlation coefficients was hierarchically
clustered and color-coded using the heatmap function with the
default values for the clustering.

In general, metabolite quantities are provided as means � sd.

Mathematical modeling of fatty acid �-oxidation

The fatty acid 	-oxidation was described as a linear cascade of
subsequent, irreversible first-order reactions such as Ṁi(t) 

ki�1(t) · Mi�1(t) � ki(t) · Mi(t), with Ṁi being the time
derivative dMi/dt and ki and ki�1 conversion rate parameters.
The change of a metabolite Mi in the cascade at time t thus
depends on the production of Mi by shortening of Mi�1 (first
part on the right-hand side of the equation) and the conver-
sion of Mi to Mi�1 (second part). For a more detailed
description of the model, see Supplemental Data. All reac-
tions were described in this fashion and combined to a system
of differential equations. Solving this system for steady-state
conditions (i.e., metabolite concentrations do not change
over time) yields conversion rates that are proportional to
concentration ratios, also referred to as model-driven ratios.
The correlations between anthropometric and biochemical
parameters, such as BMI or plasma glucose, with metabolite
concentrations and model-driven ratios were calculated with
Spearman’s rank correlation statistics. Rank correlations for
biochemical parameters were calculated using metabolite
concentrations of the fasting period. Anthropometric param-
eters were correlated with averaged metabolite concentra-
tions of the fasting period. P values were corrected for
multiple testing by controlling the false discovery rate at a
global significance level of 0.05 (16). Pgain statistics for
metabolite ratios were calculated as:

P gain�M1

M2
, X� �

min(P(M1, X), P(M2, X))

P�M1 ⁄ M2, X�
with metabolites M1 and M2 and their respective model-driven ratio
M1/M2, parameter X (e.g., BMI) and P(A, B) being the corrected P
value of Spearman’s rank correlation between variable A and
variable B. For cases where the model improves statistical correla-
tions, values of Pgain will be �1. All analysis steps were performed
using Matlab 7.11 (MathWorks, Natick, MA, USA).

RESULTS

Time-dependent metabolite changes reflect the
metabolic conditions induced by the challenges

The challenges performed within this study induced
either anabolic or catabolic states, resulting in revers-
ible metabolite changes. As expected, plasma concen-
trations of glucose and insulin were constantly low
during fasting (85.9�11.3 mg/dl and 4.6�1.5 �IU/ml)
and increased 30 min after the OGTT (141.8�28.6
mg/dl and 48.8�21.3 �IU/ml). Plasma lactate levels
showed the most prominent increase within 30 min of
intensive cycling (PAT; from 9.6�2.9 to 66.5�25.7
mg/dl, change
�595%). Fasting for 36 h increased
NEFAs and branched chain amino acids in plasma,
acetone in urine and breath, and, interestingly, also
urinary excretion of 	-aminoisobutyrate (Fig. 2). Com-
plementary EBC profiles of putatively annotated m/z
peaks showed a decrease in concentrations of medium
oxoacids, such as oxodecanoic acid ([C10H18O3�
Na]�, �m/z
0.024 ppm) and oxododecanoic acid
([C12H22O3�Na]�, �m/z 
 �0.065 ppm). Oxoacids
are implicated in fatty acid biosynthesis. To investigate
similarities in the time courses of metabolites, we
provided a pair-wise cross-correlation analysis of 275
metabolites quantified in plasma, urine, and breath air
in samples of all time points (Fig. 3). High positive
correlations (shown in red in Fig. 3) indicate metabo-
lites with coherent concentration changes over time.
High positive correlations (r
0.94, P�2�10�16) were
found between metabolites such as glucose and hexoses
measured by different methods, or between metabo-
lites that are known to be biochemically intercon-
nected, such as chylomicron and VLDL quantity
(r
0.9, P�2�10�16). Insulin was positively correlated
with anabolic metabolites, such as glucose (r
0.88,
P�2�10�16) but also revealed high correlations with
C0 (r
0.69, P
5.1�10�9), propionylcarnitine (C3;
r
0.71, P
1.0�10�9) or proline (r
0.68, P
7.8�
10�9). C0 was positively correlated with the short-
chain acylcarnitines, especially C3 (r
0.71, P
7.4�
10�10) and valerylcarnitine (C5; r
0.67, P
1.4�
10�8), but negatively with longer acylcarnitines and
acetylcarnitine (C2), which showed the strongest anti-
correlation (r
�0.7, P
2.1�10�9). Over the 36 h of
fasting, C2 levels increased from 5.4 � 1.1 to 15.9 � 5.0
�M, whereas C0 decreased from 39.7 � 7.2 (basal) to
33.9 � 8.2 �M. Figure 4A illustrates the mirror-like
anticorrelation (r
�0.66, P
2.4�10�8) of circulating
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plasma levels of C0 and the sum of acylcarnitines over
all time points and challenges.

Readouts for the metabolic condition were also de-
rived by multivariate data analysis on the entire metab-
olite profiles in plasma. PCA performed over all time
points revealed distinct time-dependent trajectories of
the metabolic profiles, reflecting the different meta-
bolic conditions during the challenges. This was partic-
ularly apparent for the exercise challenge. As high-
lighted in Fig. 4B, excursion of the metabolite profiles
began immediately after starting the 30-min cycling
exercise, and within only 2 h, the metabolite finger-
prints returned almost to the original location.

Interindividual variation during challenges

Baseline anthropometric and routine clinical data are
provided in Table 1. Our study cohort consisted of 15
healthy, male Caucasians with similar BMI (23.1�1.8
kg/m2) and age (27.8�2.9 yr). Figure 5A demonstrates
that the difference between subjects in plasma concentra-
tion of a metabolic parameter was markedly increased or
decreased by a metabolic challenge. For anabolic param-
eters, such as glucose or insulin, this distance was enlarged
in postprandial states, e.g., after the OGTT, SLD, and
OLTT, whereas concentrations were very stable and
showed little variation between the volunteers during the
36 h of fasting. In contrast, the fasting caused the most
pronounced between-subject differences in catabolic me-
tabolites. For example, the increase in plasma C2 after 36
h fasting was accompanied by an elevated coefficient of
variation (31.6%) when compared to baseline (20.5%).
The increase of interindividual variation in catabolic
metabolites during fasting was observable in all sample
types (Fig. 5B). Figure 5B also shows that volunteer 13

(V13, red) and volunteer 14 (V14, dark blue) marked the
extremes of plasma C2 concentration changes within the
study cohort. The plasma C2 concentration of V13 was
�3-fold higher (25.8 �M) at the end of the fasting period
than that of V14 (8.1 �M). Interestingly, these different
responses to the fasting state spanned across other cata-
bolic marker metabolites, such as acetone in urine and
breath, as evident by the consistent position of the sub-
jects in the time-concentration profiles. V13 showed all
indicators of a strong fasting response, with enhanced
levels of plasma NEFAs and highest 	-aminoisobutyrate in
urine of our cohort (Fig. 2). In contrast, V14 showed the
lowest levels in all these fasting-state metabolites of differ-
ent sample types. A PCA (Fig. 5C) performed over all
plasma samples (i.e., all subjects at all time points) with
samples colored by subject showed that the samples of
each subject were grouped together when transformed to
the first 3 principal components (PC1, PC2, and PC3).
This grouping was evident over all time points and even
more distinct if only samples of the 36-h fasting period are
shown. The relative contribution (loadings) of individual
metabolites in the PC1–PC3 dimensions are provided in
Supplemental Fig. S1.

Readouts from a �-oxidation model provide stronger
associations with phenotypic data than absolute
metabolite concentrations

V13 and V14 showed marked differences in the re-
sponses to the fasting challenge. We assumed that those
differences could be associated with the volunteers’
muscle or fat mass, expecting that higher fat mass
should correspond with a higher plasma concentration
of NEFAs, resulting in higher ketone body production
in the catabolic condition. However, V13 and V14 were

Figure 2. Concentration changes of se-
lected metabolites during the fasting pe-
riod, color-coded by subject. Common
catabolic parameters like branched-chain
amino acids (leucine/isoleucine, A; va-
line, B) and NEFAs (C) measured in
plasma, but also less known metabolites,
such as 	-aminoisobutyrate (D), measured
in urine, represent metabolic alterations
caused by strict fasting.
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similar in their anthropometric measures, such as BMI
(22.8 vs. 25.1 kg/m2) or RMR (1710 vs. 1850 kcal). A
correlation analysis revealed no or only weak correla-
tions between metabolite concentrations and anthro-
pometric measures in our study cohort. Therefore, we
hypothesized that the individual’s metabolic capacity in
utilization of fatty acids might provide an explanation
for the disparate responses to the fasting condition.

Consequently, we developed a simplified mathemat-
ical model of the fatty acid 	-oxidation cascade. As
input variables, we used plasma acylcarnitines of differ-
ent chain lengths as proxies for 	-oxidation intermedi-

ates during the 36 h of fasting. The readouts of our
modeling process are estimated reaction rate parame-
ters, which can be proportionally described by ratios
between acylcarnitines. As presented in Table 2, espe-
cially the ratio C2/C16 provided stronger correlations
with anthropometric measures (e.g., BMI, fat mass or
muscle-fat-ratio) than absolute plasma concentrations
of C2 or C16. The model-driven ratio therefore im-
proved statistical correlations, expressed as values of
Pgain � 1, yielding, for example, 8.8 for correlation with
BMI, 7.3 for muscle-fat ratio, and up to 18 for total fat
mass. In some cases,only model-driven ratios were

Figure 3. Correlations in metabolite trends. Pearson’s correlations of 275 metabolites, measured in plasma (163 metabolites),
urine (6 metabolites) and breath air (106 metabolites). Cross-correlation of mean time courses of each metabolic trait reveals
metabolites with a similar or opposite trend in their concentration curves. High positive correlations indicate similar behavior
with regard to the direction of change induced by the challenge protocol. Zooming into panels reveals correlated (red) or
anticorrelated (blue) metabolites.
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significantly correlated with anthropometric parame-
ters (underscored values in Table 2). Biochemical
parameters, such as fasting glucose or insulin levels,
also revealed higher correlation coefficients with
model-derived ratios than with the absolute plasma
levels, for example, of acylcarnitines (Table 2 and
Supplemental Fig. S2).

DISCUSSION

Metabolite changes reflect the challenges

The human metabolome is subject to continuous
changes. Anabolic conditions, as after food intake, and
catabolic states during fasting or physical exercise are
an expression of the plasticity of metabolic control.
Here, we present a study that conceptually explores the
metabolic plasticity by analyzing metabolite changes in
response to 6 metabolic challenges stimulating either
catabolic conditions (fasting and cycling) or anabolic
states (OGTT, OLTT, and SLD). According to the
catabolic to anabolic shifts and vice versa, the plasma
concentrations of standard parameters like insulin,
glucose, and lactate revealed the expected alterations,
demonstrating the validity of the applied challenges
and the acquired data set. As insulin drives the transi-
tion from a fasting state to a fed state, its time course
was positively correlated with anabolic metabolites,
such as glucose, but also revealed less known correla-
tions over time with C0 and the short-chain acylcar-
nitines C3, C4, and C5. During fasting, increased
lipolysis and 	-oxidation of fatty acids in mitochondria
provides most of the energy needed. Fatty acids enter
the cytosol from plasma, are converted into CoA-
thioesters, and subsequently are transferred into the
mitochondria via the palmitoyl-CoA carnitine trans-
ferase II shuttle (17, 18). Since this acyl-CoA import
requires C0, the decline in plasma C0 concentrations
during fasting observed here indicates that the cellular
carnitine supply is increased by its uptake from plasma.
Moreover, it has been hypothesized previously that a
spillover of acetyl- and acyl-CoA due to increased
fatty acid flux through 	-oxidation in cells is buffered
by releasing the respective carnitines into plasma

Figure 4. Metabolic response to challenges. A) Mean plasma concentrations of the 15 subjects at each sampling time point of
C0 (red) and the sum of all acylcarnitines including C2 (green) are significantly anticorrelated (r
�0.66, P
2.4�10�8),
reflecting switches between anabolic and catabolic metabolism induced by the various challenges. For better visualization,
respective mean concentrations were scaled to a mean � sd of 0 � 1. B) PCA is based on the metabolic profiles of all time points
in plasma (56�163 data matrix, see Materials and Methods). PAT challenge time points (blue) started at 4 PM with sampling
at 0, 15, and 30 min during cycling and in the recovery phase at 15, 30, 60, and 90 min after cycling. Time points of the fasting
challenge (orange) started with a sample taken at 8 AM (after an overnight fast), followed by samples taken after further 2, 4,
6, 8, 10, 12, 14, 16, and 24 h. According to the different challenges, the samples are located in a time-dependent trajectory in
the metabolic space spanned by the first 2 principal components (PC1 and PC2).

TABLE 1. Baseline anthropometry and blood chemistry of the
study cohort

Parameter

Value

Mean � sd CV (%)

Age (yr) 27.8 � 2.9 10.7
Height (m) 1.8 � 0.1 3.5
Weight (kg) 77.5 � 7.1 9.1
BMI (kg/m2) 23.1 � 1.8 7.6
FM (kg) 14.4 � 3.3 23.1
FFM (kg) 59.5 � 5.9 9.9
Waist circumference (cm) 80.5 � 4.6 5.7
Hip circumference (cm) 90.1 � 4.7 5.2
Heart rate (min�1) 62 � 11.4 18.4
Blood pressure, systolic

(mmHg) 118.8 � 5.9 4.9
Blood pressure, diastolic

(mmHg) 81.9 � 5.9 7.3
24 h RMR (kcal) 1721.3 � 223.6 13
RQ 0.85 � 0.1 6.5
Total cholesterol (mg/dl) 169.8 � 37.5 22.1
Triglycerides (mg/dl) 78.1 � 26.2 26.2
Lactate (mg/dl) 9.6 � 2.9 29
Glucose (mg/dl) 84.9 � 7.5 8.8
Insulin (�IU/ml) 5.7 � 1.4 23.6

Values were measured after a 12-h overnight fast (n
15). BMI,
body mass index; FM, fat mass; FFM fat free mass; RMR, resting
metabolic rate; RQ, respiratory quotient; CV, coefficient of variation.
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(19, 20). Our results are consistent with this view, as
plasma levels of C2 and all acylcarnitines, except C3,
C4, and C5, showed a strong increase in times of
elevated 	-oxidation, e.g., during fasting or exercise.
When catabolism was reversed to an anabolic state
with elevated plasma insulin levels, the exact oppo-
site effect on the levels of C0 and C2 or the sum of

acylcarnitines was observed. Therefore, the circulat-
ing plasma levels of C0 and the sum of acylcarnitines
responded in an almost mirror-like anticorrelation to
catabolic and anabolic challenges. The mirror-like
anticorrelation of C0 vs. C2 was observed over the
entire 4 d of the trial and suggests that these two
metabolites or their ratio may serve as markers for

Figure 5. Interindividual variation of metabolite concentrations in the context of challenges and sample types. A) Depending
on the challenges, the interindividual variation in the concentrations of metabolites increased or decreased. Mean plasma
concentrations of insulin and C2 are shown as red curves. Shaded area denotes the between subject-distance, i.e., the range
between the minimal and the maximal concentration observed in any participant. B) For d 1 and d 2, the individual C2
concentration curves in plasma are shown for each subject (top panel). The quantities of acetone in breath air (determined by
PTR-MS; middle panel) and urine (determined by NMR; bottom panel) match the observations seen for C2 (determined by
MS/MS) in plasma. The large differences in the concentrations between subject 14 and subject 13 are consistent across the 3
sample types. C) Top panel: score plot of a PCA based on the metabolic profiles of all samples in plasma (840�163 data matrix,
see Materials and Methods). Bottom panel: PCA plot including only samples of the fasting challenge. Despite intraindividual
variations due to various challenges and sampling times, the samples of each subject are grouped together by the PCA using only
the principal components 1–3 (PC1–PC3).
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any shift from catabolic to anabolic state and vice
versa.

Anabolic and catabolic states of metabolism were also
obvious in a PCA performed over all time points that
revealed distinct time-dependent trajectories of the
metabolic profiles. Therefore, these trajectories reflect
the plasticity of the metabolite profile by illustrating
metabolite alterations induced by the challenges and
the return to the initial situation.

Interindividual variation can be extended and
compressed by metabolic challenges: the accordion
effect

Recognizing that the human metabolome is influ-
enced by a number of factors, strict subject inclusion
criteria were met in the present study. As intended,
the study participants consisted of a homogeneous
group (Table 1) of 15 healthy, male Caucasians
within a narrow BMI and age range. Sample collec-
tion, processing, and subject treatment were also
highly standardized to minimize variation. Despite
best possible standardization, our metabolome data
demonstrated between-subject variation, probably
originating from environmental conditioning (di-
etary habits, lifestyle, etc.) on basis of a given genetic/
epigenetic makeup. A PCA of all plasma metabolites
showed that despite large intraindividual variation
over the various challenges, the samples of each
subject were clustered together. This was even more
pronounced after a strong metabolic challenge, such
as a 36-h fasting period. Regarding the individual
time courses of the measured parameters, we ob-
served that the intersubject variation of a metabolic
parameter was markedly increased or decreased by a

metabolic challenge, even in volunteers of otherwise
similar phenotypic appearance. For anabolic param-
eters, such as glucose or insulin, the distance be-
tween subject concentrations was enlarged in post-
prandial states, e.g., after the OGTT, SLD, and
OLTT, whereas the concentrations were very stable
and showed little variation between the volunteers
during the 36 h fasting. In contrast, the fasting
caused the most pronounced differences between
subjects in catabolic metabolites, e.g., C2 in plasma or
acetone in urine and breath. The elevation in inter-
individual variation observed during the fasting chal-
lenge allowed identification of two distinct metabotypes,
namely V13 and V14. Those two volunteers marked
the extremes of the study cohort, as shown for the
catabolic metabolites C2 in plasma or acetone in
urine and breath (Fig. 5). V13 showed all indicators
of a classical fasting response, with enhanced concen-
trations of plasma NEFAs as indicator of enhanced
lipolysis, increased ketone body production with
increased urinary excretion and exhalation in breath,
and also highest urinary excretion of 	-aminoiso-
butyrate (Fig. 2). 	-Aminoisobutyrate is a thymine
catabolite that was reported to increase fatty acid
oxidation and reduce body fat in supplemented mice
(21, 22). Our results indicate that 	-aminoisobu-
tyrate also provides a reliable marker for the degree
of fatty acid oxidation in humans. In contrast, V14
appeared almost completely refractory to the cata-
bolic condition with only small increases in fasting
state metabolites and 	-aminoisobutyrate in different
sample types. This shows not only the high qualitative
and quantitative consistency across samples from
different body fluids and analysis platforms, but also

TABLE 2. Model-derived metabolite ratios improve correlation with metabolic parameters

Pgain Cx ABP

Rank correlation

C2/Cx vs. ABP C2 vs. ABP Cx vs. ABP

P � P � P �

7.5 � 106 C16 Sum of hexoses (p) 1.9 � 10�15 �0.61 1.4 � 10�8 �0.48 0.632 0.07
3.5 � 105 C16 	-Aminoiso-butyrate (u) 1.6 � 10�16 0.77 5.7 � 10�11 0.67 0.901 0.03
2.9 � 103 C6a Free carnitine (p) 5.1 � 10�7 �0.41 0.001 �0.29 0.918 0.02
221.5 C18 Glucose (p) 1.4 � 10�5 �0.46 0.003 �0.35 0.520 0.11
87.1 C4 Free carnitine (p) 2.5 � 10�6 �0.39 0.001 �0.29 2.1 � 10�4 0.33
51.4 C18 Hydroxyliso-butyrate (u) 4.1 � 10�9 0.59 2.1 � 10�7 0.55 0.914 0.03
18.1 C16 Fat mass 0.015 �0.68 0.731 �0.19 0.267 0.44
10.9 C18 Creatinine (p) 0.028 �0.62 0.405 �0.35 0.301 0.42
8.8 C16 BMI 0.002 �0.77 0.944 �0.04 0.014 0.70
8.5 C16 Body fat percentage 0.042 �0.58 0.798 �0.14 0.354 0.39
7.3 C16 Muscle-fat-ratio 0.037 0.60 0.850 0.11 0.271 �0.43
5.3 C4 Insulin (p) 0.018 �0.28 0.093 �0.23 0.200 0.19

Correlations between anthropometric and biochemical parameters (ABPs) with metabolite concentrations (C4, C6, C16, C18, and C2) and
model-driven ratios derived from the 	-oxidation model. Biochemical parameters and acylcarnitine and C2 concentrations were measured
during the fasting period of study day 1. Rank correlation P values were corrected for multiple testing using FDR at global significance level of
0.05. Underscored values indicate cases for which only model-driven ratios, but not single metabolite levels, were significantly correlated with
ABPs. Model-driven ratios reflecting biological processes improve statistical correlations with ABPs of energy metabolism when compared to the
correlations with single metabolite concentrations, resulting in values of Pgain � 1. Cx, acylcarnitine with chain length x; �, Spearman’s rank
correlation coefficient; p, parameter concentration determined in blood plasma; u, parameter concentration determined in urine. aDetection
methods cannot distinguish between C6 and C4:1-DC.
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that it was possible to identify distinct metabotypes
even in a homogenous cohort by differences in the
responsiveness to challenges, such as extended fast-
ing.

A model of �-oxidation provides parameters
that correlate with the individual’s metabolic
condition

In search of the origin of the interindividual variation,
especially in the fasting response, we performed a
correlation analysis of metabolite concentrations and
parameters derived from anthropometric measure-
ments (body mass, fat and muscle mass, etc.), expecting
that, for example, higher fat mass should correspond
with higher NEFA or ketone body production during
catabolic conditions. However, in our healthy, young
cohort, the observed differences in metabolite concen-
trations during fasting provided no significant associa-
tions with anthropometric measures like body mass, fat,
and muscle mass (Table 2). Therefore, we hypothesized
that the individual’s metabolic capacity in utilization of
fatty acids might provide an explanation for the dispa-
rate responses to the fasting condition. Consequently,
we asked whether model-derived parameters from a
discrete biological process could provide a surrogate
for metabolic differences. Since the true metabolic
fluxes and their capacities are difficult to measure in
vivo, we developed a simplified mathematical model for
fatty acid 	-oxidation. This model is based on the
linearity and the irreversibility of the central reactions
by which fatty acids released from adipose tissue during
fasting are subsequently degraded in mitochondria. We
used plasma acylcarnitines of different chain lengths
with their characteristic changes during 36 h of fasting
as input variables in our model, assuming that plasma
acylcarnitines serve as proxies for intracellular 	-oxida-
tion intermediates. This assumption is supported by
findings that inborn errors of 	-oxidation lead to
specific changes in plasma acylcarnitine levels (23, 24).
Genome-wide association studies also reported robust
statistical associations between plasma acylcarnitines
and genetic variants of 	-oxidation enzymes (10, 25).
We therefore based our model on the acylcarnitines in
plasma as representatives for 	-oxidation intermedi-
ates.

With C18 as the initial substrate and C2 as the final
product, a series of acylcarnitine ratios was derived
from the model that correlated significantly with an-
thropometric parameters, such as BMI, total body fat
mass, body fat content (%), or muscle-to-fat ratio
(Table 2). Although C2 may, in small quantities, be
derived from other sources than 	-oxidation, the ratios
derived from the acylcarnitines of different chain
length can only represent fatty acid oxidation. These
metabolite ratios as readouts of the simplified 	-oxida-
tion model appear to better describe individual meta-
bolic capacities as compared to absolute concentrations
of individual metabolites alone, since they inherently
correct for individual variations of metabolite plasma

levels. It also suggests that models based on biochemi-
cal knowledge can help to explain associations and
variations among metabolite patterns, body composi-
tion, and metabolic state much better than absolute
metabolite concentrations. Although the 	-oxidation
model has proven its feasibility by the coherence of the
derived ratios with parameters that influence fasting-
specific biochemical processes, there are some caveats.
For example, the model assumes that the stepwise
shortening of the fatty acid is irreversible under the
given metabolic conditions, at least up to the last
enzyme, which mediates the thiolytic cleavage. More-
over, fatty acid import into cells, as well as acylcarnitine
efflux, should not be rate-limiting. The model also
assumes steady-state conditions with capacity limits de-
termined only by the available redox equivalents (FAD
and NAD). When 	-oxidation flux exceeds citric acid
cycle and respiratory chain activity in muscle, hepatic
ketone body production is increased. With a delay in
time, this can easily be followed by enhanced excretion
of acetone in breath and urine, as shown in our
volunteers (Fig. 5B). Extending the 	-oxidation model
to ketone body production could further improve
analysis of coherent changes in metabolome data sets.
It seems valuable to apply such quantitative modeling
approaches also to other metabolite data sets to obtain
parameters that better reflect pathway capacities.
These may help in the characterization of human
metabotypes in genotype-phenotype association stud-
ies.

Perspectives: from healthy to disease states

Recent biomarker discovery studies based on metabo-
lomics have identified plasma free fatty acids, acyl-
carnitines, ketone bodies, branched chain amino
acids, and amino acid degradation products to be
significantly altered in states of insulin resistance or
diabetes type 2 (26 –28). These putative metabolite
biomarkers of a prediabetic or diabetic state strongly
resemble the signature of metabolite changes of a
prolonged fasting state (�20 h) in our healthy
volunteers. In this respect, insulin-resistant or dia-
betic patients show metabolite profiles of a catabolic
condition, even in an otherwise anabolic state. In-
creased ketoacid levels in urine or their volatile
derivatives, such as acetone, found in breath charac-
terized an advanced fasting state in our healthy
volunteers and may in a postprandial condition
report insulin resistance or diabetes-specific meta-
bolic impairments that can easily be detected in
noninvasive samples, such as urine or breath.

CONCLUSIONS

We have generated a large data set of time-depen-
dent metabolite profiles representing normal and
extreme metabolic conditions of young, healthy,
male volunteers measured in different body compart-
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ments and by a variety of state-of-the-art NMR- and
MS-based methods. To our knowledge, this is the first
time that all biochemical processes related to ex-
tended fasting, glucose and lipid tolerance tests,
controlled meals, physical exercise, and physiological
stress were explored in a single metabolome study. In
an effort to describe the flexibility of the organismic
response, we demonstrated an “accordion effect” for
metabolite profiles, showing that challenges increase
metabolite variability between volunteers, allowing
discrete metabotypes to be identified that would not
be seen in normal fasting conditions. Interindividual
variability of selected metabolites was consistent
across the studied sample types and emphasizes the
potential diagnostic use of noninvasive samples, such
as urine or breath. Plasma-free carnitine and acylcar-
nitines were shown to define best any catabolic and
anabolic conditions and their transitions, and their
ratio could be useful as marker for the metabolic
state. These metabolites used as input and output
variables in a quantitative systems biology model of
	-oxidation revealed parameters that far better iden-
tify discriminators of the individual metabolic varia-
tion than absolute plasma concentrations, demon-
strating that such modeling may aid in the
interpretation of large metabolomics data sets. The
freely available data set of the HuMet study provides a
reference for future human studies and may also be used
to develop and validate other metabolic models.
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